
Using Hardware Methods to Improve Time-predictable
Performance in Real-time Java Systems

Jack Whitham
Real-Time Systems Group
Dept. of Computer Science

University of York, York
jack@cs.york.ac.uk

Neil Audsley
Real-Time Systems Group
Dept. of Computer Science

University of York, York
neil@cs.york.ac.uk

Martin Schoeberl
Institute of Computer

Engineering
Vienna University of
Technology, Austria

mschoebe@mail.tuwien.ac.at

ABSTRACT
This paper describes hardware methods, a lightweight and
platform-independent scheme for linking real-time Java code
to co-processors implemented using a hardware description
language (HDL). Intended for use in embedded systems,
hardware methods have similar semantics to the native meth-
ods used to interface Java code to legacy C/C++ software,
but are also time-predictable, facilitating accurate worst-
case execution time (WCET) analysis.

By reference to several examples, the paper demonstrates
the applicability of hardware methods and shows that they
can (1) reduce the WCET of embedded real-time Java, and
(2) improve the quality of WCET estimates in the presence
of infeasible paths.

1. INTRODUCTION
Within embedded real-time systems, applications need to

make good use of minimal hardware and energy resources. A
popular approach involves the use of application-specific co-
processors, which carry out otherwise CPU-intensive tasks
within dedicated hardware [2, 4, 5, 11, 31]. The hardware is
able to carry out work in less time and using less energy than
equivalent software on a CPU through specialization and
use of low-level parallelism. Both stream processing [9] and
control tasks [17] can be implemented in this way. Within
real-time systems, another major advantage of application-
specific hardware is time-predictability [5]. Computing the
worst-case execution time (WCET) of a program is a difficult
problem for typical CPU designs due to the complex interac-
tions between the machine code and the hardware [14,20,27],
but the specialization of co-processors leads to simpler tim-
ing behavior.

Java is an increasingly popular language for implementing
embedded applications [15]. CPUs such as the Java Opti-
mized Processor (JOP) [25] execute Java code directly with-
out the overhead of interpretation or JIT compilation [19].
However, making use of application-specific co-processors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES’09 September 23-25, 2009 Madrid, Spain
Copyright 2009 ACM 978-1-60558-732-5/09/09 ...$10.00.

from Java software is challenging, because Java hides the
details of the surrounding hardware environment. Standard
Java provides no way to represent a co-processor as a Java
object, so programmers must use devices via an operating
system or the Java native interface (JNI) [6]. Some im-
plementations of JNI add significant overheads, and none
are suitable for embedded platforms where Java is the na-
tive machine code [25]. Other Java extensions have been
proposed to address this, but suffer from a lack of abstrac-
tion [13,29] or over-complexity [8,30]. These problems work
against the need for portability (a principal goal of Java)
and the need for time-predictability in embedded real-time
systems.

This paper describes a lightweight, flexible and platform-
independent scheme for linking Java code to co-processors
implemented in a hardware description language (HDL) such
as VHDL [3] or Verilog [32]. The scheme is evaluated us-
ing the WCETs that can be obtained by analysis of various
programs implemented using software only, and using both
software and co-processor hardware. The test environment
is an embedded real-time system based on the JOP CPU
implemented using a Xilinx ML401 field-programmable gate
array (FPGA) prototyping board [35].

The structure of this paper is as follows. Section 2 presents
related work, and Section 3 describes the JOP hardware en-
vironment used for evaluation. Section 4 gives an abstract
description of hardware methods. Section 5 presents details
of a concrete implementation of hardware methods for the
JOP CPU, and describes how the WCET of both Java code
and co-processor functionality can be determined in this en-
vironment. Section 6 evaluates hardware methods quantita-
tively using benchmark programs and qualitatively through
a discussion. Section 7 concludes the paper.

2. RELATED WORK
Platform-independent interfaces between software (or soft-

ware and hardware) are not a new idea. The Java Native
Interface (JNI) links Java code to non-Java (“native”) code.
It can be used on all Java platforms that support JNI [6].
JNI’s interfaces are primarily method-oriented: that is, the
functionality of native code is accessed via method calls with
the same semantics as regular Java method calls. These na-
tive methods are typically written in C or C++, and because
the interface is method-oriented, it is easy to make use of
them from Java.

A key issue is access to Java variables from native code.
These may include the parameters that native methods are

called with, return values that are produced, and any other
variables that might be indirectly accessible (e.g., fields in
objects passed to native methods). JNI handles this by pro-
viding an application programming interface (API) to the
Java virtual machine (JVM) which allows primitive Java
types (e.g., int, short) to be translated to native types (e.g.,
32-bit words). Native method programmers must use this
API for each Java variable access. However, this effort can
be avoided through the use of a higher-level interface gener-
ator such as the Simplified Wrapper and Interface Generator
(SWIG), which hides the complexity behind a layer of ab-
straction [7]. SWIG produces both Java and native code so
that the native methods need no awareness of JNI.

Java interfaces to co-processor hardware can also make
use of a method-oriented paradigm, but previous work has
not always taken this approach. Direct access to memory-
mapped registers is possible in Java via RawMemoryAccess

objects, and this has been used to control hardware de-
vices [13] but provides no way to map device functional-
ity to Java primitives such as fields and methods. Hard-
ware Objects for Java [29] extend this: each field within a
hardware object shares a physical memory address with a
co-processor register. Hardware objects have been imple-
mented for the JOP CPU and two software JVMs (CA-
CAO and SimpleRTJ). This interface is at a higher level
than RawMemoryAccess. However, as with JNI and RawMem-

oryAccess, additional Java code needs to be generated to
implement the method-oriented paradigm. This code must
translate Java variables into a form that could be accessed
by the hardware.

Accessing Java variables from the co-processor hardware
is not a trivial problem when the variables are not primi-
tive and when the variables are vector types (e.g., arrays).
This occurs (1) because the physical format of those types is
defined by the JVM [6], and (2) because the physical mem-
ory address of the objects may be changed by the JVM at
any time (e.g., by garbage collection). JNI avoids the first
issue by limiting the fields that can be directly accessed to
primitives and arrays of primitives, and avoids the second
issue by making copies of array objects as necessary [18].
These problems are created because the JVM is responsible
for managing objects; their locations in memory and their
structure. Two solutions have been explored in previous
work:

(1) The object management functionality can be decou-
pled from the process of executing Java code so that co-
processors can make use of it to directly access Java ob-
jects. Borg et al. implemented the Object Manager [8], a co-
processor which controls memory allocation for all Java code
running on JOP [25]. In this arrangement, co-processors and
Java software share a common interface for any access to any
object, and objects can be freely passed between hardware
and software. However, this facility has a cost as it is not
portable. Other JVMs would require completely different
object managers to be written, since there is no standard
for this functionality.

(2) Within Java Hardware Threads, all accesses to Java
objects are routed through the software JVM [30]. Each
co-processor is associated with a Java thread which acts as
a proxy; this uses a channel called the hardware thread in-
terface (HwTI) to communicate with the co-processor. This
is bi-directional: Java code starts co-processor functionality
by calling methods in the proxy thread object, and the co-

processor accesses Java objects and methods by requesting
them via the proxy thread. This offers a method-oriented
protocol for co-processor access, and resolve the problem of
accessing variables using a proxy thread. However, there is
a performance overhead, because accesses must be serviced
by software: they cannot go directly to memory. In con-
trast, JNI provides a way to copy variables into memory
space controlled by the native methods, so the overhead is
per-native call rather than per-access. Additional memory
and performance overheads are created by the existence of
a thread for each co-processor.

3. BACKGROUND
The Java processor JOP has been chosen as an initial

implementation platform for hardware methods. JOP [25]
is an implementation of the JVM in hardware with the
main design constraint to be as time-predictable as possi-
ble. Most instructions, the bytecodes of the JVM, execute
in constant time. Timing dependencies between instruc-
tions, which are common in pipelined processors, are com-
pletely avoided. Therefore, JOP is an easy target for WCET
analysis. JOP is also a soft CPU, designed for implemen-
tation within an FPGA, so it is easily extended using the
application-specific co-processors that provide the function-
ality of hardware methods.

As WCET analysis is simple for software on JOP, several
tools have been developed to support JOP as the target
processor. For the evaluation we use the tool WCA [28],
which has been redesigned [16]. The WCET tool analysis the
Java program at bytecode level, builds the control flow graph
(CFG) of the program, transforms the CFP to constraints
for an integer linear programming (ILP) problem, adds loop
bounds to the constraints, and solves the ILP problem. An
optional data-flow analysis can detect simple loop bounds.
More complex bounds can be annotated in the Java source.

For access to main memory from JOP and from hard-
ware methods, we leverage an arbiter designed for a chip-
multiprocessor (CMP) version of JOP [22]. Three differ-
ent memory arbiters are available in the JOP distribution:
(1) a priority based arbiter, (2) a fair arbiter, and (3) a
time-division multiple access (TDMA) arbiter. For a time-
predictable system in general, only TDMA-based arbitration
is analyzable. Knowing the TDMA schedule, WCET values
for individual bytecodes can be derived. With these values
WCET analysis of a CMP system is possible.

A co-processor which needs access to objects in the mem-
ory can be attached to the memory arbiter just like a CPU
core. In the case of a TDMA arbiter the TDMA schedule
has to be taken into account for WCET analysis of the hard-
ware method. For a uni-processor system with co-processors
the priority based arbiter is another option. During the exe-
cution of the hardware method, the CPU polls the status of
the co-processor in a tight loop without accessing memory.
In that case, it is more efficient to assign the whole mem-
ory bandwidth to the co-processor. With the priority based
arbiter all cycles can be used by the co-processor.

COPROCESSOR mac_coprocessor
METHOD mac1
PARAMETER size int
PARAMETER alpha int[]
PARAMETER beta int[]
RETURN int

Figure 1: Example of a hardware method descrip-
tion using an interface description language (IDL).

public class mac_coprocessor {
public static mac_coprocessor getInstance ();
public int mac1(int size , int[]alpha , int[]beta);

}

Figure 2: Generated software interface for the MAC
co-processor (Figure 1).

4. HARDWARE METHODS
In embedded real-time systems, resource overheads should

generally be minimized. Therefore, the challenge addressed
in this paper is the implementation of the most important
features of previous work with minimal overhead. These are
(1) method-oriented access to co-processor functionality, (2)
parameter and return value passing and (3) JNI-like access
to Java objects in memory. This section presents an abstract
overview of hardware methods, which represent co-processor
functionality in a manner that is analogous to the native
methods implemented through JNI.

Section 4.1 describes the interface description language
(IDL) that instructs an interface generator to generate ap-
propriate Java and VHDL code. Section 4.2 gives an exam-
ple architecture, and Section 4.3 discusses the sequence of
operations used to activate a co-processor function in that
architecture.

4.1 Interface Description Language
Figure 1 shows an example of a method description. The

example represents a multiply-accumulate (MAC) unit, a
device to speed up digital signal processing algorithms. The
MAC co-processors acts on two arrays of numbers as shown
in Figure 13.

The IDL code begins by declaring a co-processor (mac_co-
processor). A co-processor is a container of one or more
hardware methods. The next line begins the definition of
a method (mac1). Its parameters are specified (names and
types) and the return type is also given. Note that the types
are all primitives, or arrays of primitives - this restriction is
necessary because only the JVM knows how to manipulate
more complex objects.

This example shows only one co-processor containing one
hardware method. The IDL code can describe more than
one co-processor, and each co-processor can contain more
than one method. Java itself could be used as the IDL,
since introspection can be used to determine the methods
defined by a class and the parameters that they use, but this
would not provide any way to specify differences between
Java types (e.g., int) and their hardware equivalents, which
may have a narrower bit width. It also does not provide
any way to specify additional information about each co-

entity mac_coprocessor_if is port (
clk : in std_logic;
reset : in std_logic;

method_mac1_param_size : out vector (31 downto 0);
method_mac1_param_alpha : out vector (23 downto 0);
method_mac1_param_beta : out vector (23 downto 0);
method_mac1_return : in vector (31 downto 0);
method_mac1_start : out std_logic;
method_mac1_running : in std_logic;

cc_out_data : out vector (31 downto 0);
cc_out_wr : out std_logic;
cc_out_rdy : in std_logic;
cc_in_data : in vector (31 downto 0);
cc_in_wr : in std_logic;
cc_in_rdy : out std_logic);
end entity mac_coprocessor_if;

Figure 3: Generated hardware interface for MAC.

processor, such as WCET metadata.
From this IDL code, a Java class (the software interface)

and VHDL component (the hardware interface) are gener-
ated. Given Figure 1, the Java class and VHDL component
will have the external interfaces shown in Figures 2 and 3.
The actual implementation of the class and the component
are dependent on the platform.

Just as the Java side of the interface is embedded within
a larger program, the VHDL component is also intended
to be embedded within a co-processor. The co-processor
may have additional links to the outside world, e.g., to the
memory bus, but it communicates with the JVM via the
generated VHDL component (e.g., mac_coprocessor_if).

4.2 Architecture Example
Figure 4 shows an overview of the link between Java and

the co-processor as it appears within a JOP-based architec-
ture. The components shown in this diagram can be divided
into three groups.

(1) User-defined components (light gray). These describe
the application as designed by the users of the architecture:
programmers and designers. They are written in Java, IDL
code, and HDL code. These components can be the same in
any architecture that implements hardware methods.

(2) Generated components (white). These are automat-
ically produced by the IDL code as described in the Ap-
pendix. They include Java code (Figure 2) and the inter-
face for each co-processor (Figure 3). The generated code
can be different for each architecture that implements hard-
ware methods.

(3) Provided components (dark gray). These components
are fixed parts of the architecture; neither generated nor
user-defined. They include JOP and the control channel in-
terface (CCI) hardware, which is a JOP-specific component
used to communicate with the co-processors. This also in-
cludes the hardware objects abstraction [29], which can be
used by the generated Java code to communicate with the
CCI.

Figure 5 is a detailed view of the JOP implementation of
hardware methods for the mac_coprocessor example given
in Figures 1-3. Each arrow within this diagram is a group
of wires defined within the HDL code. The co-processor
interface (wires named method_mac1...) is the same on ev-

Java
software

Interface classes
for co-processors

(e.g. Figure 2)

JOP CPU
Control channel
interface (CCI)

Co-processor

Interface hardware
for co-processor

(e.g. Figure 3)

O
p

ti
o
n

a
l:

O
th

e
r

c
o

-p
ro

c
e
s
s
o

rs
a

n
d

C
P

U
c
o
re

s

User-defined component

Generated component

Interface
generator

Provided component

IDL code
(e.g. Figure 1)

User-defined Java method

Co-processor interface method (e.g. mac_coprocessor.mac1, Figure 2)

Co-processor running

Convert
parameters

Activate co-
processor

Wait for completion
Convert

return value

Control channel
interface (CCI) Co-processor 1

Interface hardware
for co-processor 1

JOP
CPU 1

Co-processor 2

Interface hardware
for co-processor 2

Co-processor 3

Interface hardware
for co-processor 3

Control channel
interface (CCI)

JOP
CPU 2

R Co-proc. ID Register ID Payload

31 30 23 15 0

Reply flag (0 = command, 1 = reply)

Unique 7-bit value for each co-processor

Each method is associated with a status register,
a return register, and parameter registers

Phase 1 Phase 2 Phase 3

Method calls

SimpCon
interface Control channel

Time

Hardware
Objects for
Java Interface

mac1 hardware
method

(user-defined
component)

Control channel
interface (CCI)

(provided
component)

mac_coprocessor

G
e
n

e
ra

te
d

in
te

rf
a

c
e

h
w

fo
r

c
o
-p

ro
c
e

s
s
o
r

(e
.g

.
F

ig
u
re

3
)

M
e
m

o
ry

b
u
s

in
te

rf
a
c
e

method_mac1_param_size

method_mac1_param_alpha

method_mac1_param_beta

method_mac1_param_start

method_mac1_param_return

method_mac1_param_running

32

24

24

32

cc_in_data

cc_in_wr/rdy

cc_out_data

cc_out_wr/rdy

32

32

JOP CPU

(provided
component) S

im
p
C

o
n

In
te

rf
a

ce

Control
channels

M
e

m
o

ry
b

u
s

in
te

rf
a

c
e

Figure 4: Example system architecture showing both software and hardware components and illustrating the
relationships between Java code, the JOP CPU and a co-processor.

Java
software

Interface classes
for co-processors

(e.g. Figure 2)

JOP CPU
Control channel
interface (CCI)

Co-processor

Interface hardware
for co-processor

(e.g. Figure 3)

O
p

ti
o
n

a
l:

O
th

e
r

c
o

-p
ro

c
e
s
s
o

rs
a

n
d

C
P

U
c
o
re

s

User-defined component

Generated component

Interface
generator

Provided component

IDL code
(e.g. Figure 1)

User-defined Java method

Co-processor interface method (e.g. mac_coprocessor.mac1, Figure 2)

Co-processor running

Convert
parameters

Activate co-
processor

Wait for completion
Convert

return value

Control channel
interface (CCI) Co-processor 1

Interface hardware
for co-processor 1

JOP
CPU 1

Co-processor 2

Interface hardware
for co-processor 2

Co-processor 3

Interface hardware
for co-processor 3

Control channel
interface (CCI)

JOP
CPU 2

R Co-proc. ID Register ID Payload

31 30 23 15 0

Reply flag (0 = command, 1 = reply)

Unique 7-bit value for each co-processor

Each method is associated with a status register,
a return register, and parameter registers

Phase 1 Phase 2 Phase 3

Method calls

SimpCon
interface Control channel

Time

Hardware
Objects for
Java Interface

mac1 hardware
method

(user-defined
component)

Control channel
interface (CCI)

(provided
component)

mac_coprocessor
G

e
n

e
ra

te
d

in
te

rf
a

c
e

h
w

fo
r

c
o
-p

ro
c
e

s
s
o
r

(e
.g

.
F

ig
u
re

3
)

M
e
m

o
ry

b
u
s

in
te

rf
a
c
e

method_mac1_param_size

method_mac1_param_alpha

method_mac1_param_beta

method_mac1_param_start

method_mac1_param_return

method_mac1_param_running

32

24

24

32

cc_in_data

cc_in_wr/rdy

cc_out_data

cc_out_wr/rdy

32

32

JOP CPU

(provided
component) S

im
p
C

o
n

In
te

rf
a

ce

Control
channels

M
e

m
o

ry
b

u
s

in
te

rf
a

c
e

Figure 5: Detailed view of the wiring needed to implement mac_coprocessor in hardware (Figures 1-3).

Java
software

Interface classes
for co-processors

(e.g. Figure 2)

JOP CPU
Control channel
interface (CCI)

Co-processor

Interface hardware
for co-processor

(e.g. Figure 3)

O
p

ti
o
n

a
l:

O
th

e
r

c
o

-p
ro

c
e
s
s
o

rs
a

n
d

C
P

U
c
o
re

s

User-defined component

Generated component

Interface
generator

Provided component

IDL code
(e.g. Figure 1)

User-defined Java method

Co-processor interface method (e.g. mac_coprocessor.mac1, Figure 2)

Co-processor running

Convert
parameters

Activate co-
processor

Wait for completion
Convert

return value

Control channel
interface (CCI) Co-processor 1

Interface hardware
for co-processor 1

JOP
CPU 1

Co-processor 2

Interface hardware
for co-processor 2

Co-processor 3

Interface hardware
for co-processor 3

Control channel
interface (CCI)

JOP
CPU 2

R Co-proc. ID Register ID Payload

31 30 23 15 0

Reply flag (0 = command, 1 = reply)

Unique 7-bit value for each co-processor

Each method is associated with a status register,
a return register, and parameter registers

Phase 1 Phase 2 Phase 3

Method calls

SimpCon
interface Control channel

Time

Hardware
Objects for
Java Interface

mac1 hardware
method

(user-defined
component)

Control channel
interface (CCI)

(provided
component)

mac_coprocessor

G
e
n

e
ra

te
d

in
te

rf
a

c
e

h
w

fo
r

c
o
-p

ro
c
e

s
s
o
r

(e
.g

.
F

ig
u
re

3
)

M
e
m

o
ry

b
u
s

in
te

rf
a
c
e

method_mac1_param_size

method_mac1_param_alpha

method_mac1_param_beta

method_mac1_param_start

method_mac1_param_return

method_mac1_param_running

32

24

24

32

cc_in_data

cc_in_wr/rdy

cc_out_data

cc_out_wr/rdy

32

32

JOP CPU

(provided
component) S

im
p
C

o
n

In
te

rf
a

ce

Control
channels

M
e

m
o

ry
b

u
s

in
te

rf
a

c
e

Figure 6: Time line of events as co-processor functionality is activated.

byte → vector(7 downto 0)

short → vector(15 downto 0)

int → vector(31 downto 0)

int[] → Pointer to base address of array:
vector(23 downto 0)

Figure 7: Translation of primitive Java variables into
a form that can be used by co-processor hardware.

ery platform, just as the external interface of the Java class
(Figure 2) is the same on every supported JVM. The wires
named cc_in... and cc_out... are control channels car-
rying messages to/from the co-processor. Messages are re-
ceived via cc_in...; replies are sent to cc_out.... The
CCI is responsible for sending and receiving these messages
on behalf of the CPU.

4.3 Hardware Method Call
Figure 6 shows the sequence of events as co-processor func-

tionality is activated. The first step is a method call from
Java. Within this method (a software interface for the hard-
ware method), parameters are translated into a form that
can be used by the hardware (Figure 7). In this form, the
data is transferred via the control channel (Phase 1). A start
signal is activated (e.g., method_mac1_start, Figures 3 and
5). The Java method then blocks while the running signal
(e.g., method_mac1_running) is asserted (Phase 2). Finally,
the return value is copied from the co-processor, translated
and passed to Java (Phase 3).

This arrangement reflects the semantics that a Java pro-
grammer would expect from a method, while allowing the
co-processor to operate concurrently with Java code. This
can be arranged through multithreading, or by changing the
way that the running signal is asserted by a method. For
example, it would be easy to implement “start” and “stop”
methods within a co-processor: these would return immedi-
ately, but enable or disable some background process. This
arrangement also means that there is no need for a proxy
thread for each co-processor, minimizing resource usage.

5. WCET ANALYSIS FOR HW METHODS
In an embedded real-time system, time-predictable oper-

ation is as important as performance and correctness [27].
Java CPUs such as JOP facilitate WCET analysis by ensur-
ing that every bytecode is executed in a predictable way (see
Section 3). Hardware methods must provide the same fea-
ture. WCET analysis relies on concrete knowledge of both
the application and the hardware architecture [24], so this
section is based on an FPGA implementation of hardware
methods using the JOP CPU.

Section 5.1 describes the necessary additions to the JOP
architecture. Section 5.2 explains how the WCET of the
Java code is captured, and Section 5.3 discusses methods to
obtain the WCET of a co-processor function.

5.1 JOP-based Architecture
Within this implementation, the control channel is orga-

nized as a ring network (Figure 8), since this topology allows
it to accommodate a large number of co-processors (or even
CPUs, in a multiprocessor environment). Each device on
the network (co-processor or CPU) forwards control mes-

Java
software

Interface classes
for co-processors

(e.g. Figure 2)

JOP CPU
Control channel
interface (CCI)

Co-processor

Interface hardware
for co-processor

(e.g. Figure 3)

O
p

ti
o
n

a
l:

O
th

e
r

c
o

-p
ro

c
e
s
s
o

rs
a

n
d

C
P

U
c
o
re

s

User-defined component

Generated component

Interface
generator

Provided component

IDL code
(e.g. Figure 1)

User-defined Java method

Co-processor interface method (e.g. mac_coprocessor.mac1, Figure 2)

Co-processor running

Convert
parameters

Activate co-
processor

Wait for completion
Convert

return value

Control channel
interface (CCI) Co-processor 1

Interface hardware
for co-processor 1

JOP
CPU 1

Co-processor 2

Interface hardware
for co-processor 2

Co-processor 3

Interface hardware
for co-processor 3

Control channel
interface (CCI)

JOP
CPU 2

R Co-proc. ID Register ID Payload

31 30 23 15 0

Reply flag (0 = command, 1 = reply)

Unique 7-bit value for each co-processor

Each method is associated with a status register,
a return register, and parameter registers

Phase 1 Phase 2 Phase 3

Method calls

SimpCon
interface Control channel

Time

Hardware
Objects for
Java Interface

mac1 hardware
method

(user-defined
component)

Control channel
interface (CCI)

(provided
component)

mac_coprocessor

G
e
n

e
ra

te
d

in
te

rf
a

c
e

h
w

fo
r

c
o
-p

ro
c
e

s
s
o
r

(e
.g

.
F

ig
u
re

3
)

M
e
m

o
ry

b
u
s

in
te

rf
a
c
e

method_mac1_param_size

method_mac1_param_alpha

method_mac1_param_beta

method_mac1_param_start

method_mac1_param_return

method_mac1_param_running

32

24

24

32

cc_in_data

cc_in_wr/rdy

cc_out_data

cc_out_wr/rdy

32

32

JOP CPU

(provided
component) S

im
p
C

o
n

In
te

rf
a

ce

Control
channels

M
e

m
o

ry
b

u
s

in
te

rf
a

c
e

Figure 8: The control channel acts as a ring network,
able to accommodate large numbers of co-processors
and CPUs. The protocol used on the network is
lock-free so that there is no requirement for a global
lock.

Java
software

Interface classes
for co-processors

(e.g. Figure 2)

JOP CPU
Control channel
interface (CCI)

Co-processor

Interface hardware
for co-processor

(e.g. Figure 3)

O
p

ti
o
n

a
l:

O
th

e
r

c
o

-p
ro

c
e
s
s
o

rs
a

n
d

C
P

U
c
o
re

s

User-defined component

Generated component

Interface
generator

Provided component

IDL code
(e.g. Figure 1)

User-defined Java method

Co-processor interface method (e.g. mac_coprocessor.mac1, Figure 2)

Co-processor running

Convert
parameters

Activate co-
processor

Wait for completion
Convert

return value

Control channel
interface (CCI) Co-processor 1

Interface hardware
for co-processor 1

JOP
CPU 1

Co-processor 2

Interface hardware
for co-processor 2

Co-processor 3

Interface hardware
for co-processor 3

Control channel
interface (CCI)

JOP
CPU 2

R Co-proc. ID Register ID Payload

31 30 23 15 0

Reply flag (0 = command, 1 = reply)

Unique 7-bit value for each co-processor

Each method is associated with a status register,
a return register, and parameter registers

Phase 1 Phase 2 Phase 3

Method calls

SimpCon
interface Control channel

Time

Hardware
Objects for
Java Interface

mac1 hardware
method

(user-defined
component)

Control channel
interface (CCI)

(provided
component)

mac_coprocessor

G
e
n

e
ra

te
d

in
te

rf
a

c
e

h
w

fo
r

c
o
-p

ro
c
e

s
s
o
r

(e
.g

.
F

ig
u
re

3
)

M
e
m

o
ry

b
u
s

in
te

rf
a
c
e

method_mac1_param_size

method_mac1_param_alpha

method_mac1_param_beta

method_mac1_param_start

method_mac1_param_return

method_mac1_param_running

32

24

24

32

cc_in_data

cc_in_wr/rdy

cc_out_data

cc_out_wr/rdy

32

32

JOP CPU

(provided
component) S

im
p
C

o
n

In
te

rf
a

ce

Control
channels

M
e

m
o

ry
b

u
s

in
te

rf
a

c
e

Figure 9: The structure of a message.

sages onwards if they are not recognized.
The control channel must support variable-length mes-

sages, since the number of parameters given to a hardware
method is not fixed. It must also use a lock-free proto-
col, because (1) thread pre-emption could otherwise cause
a deadlock, and (2) locks would otherwise need to be held
across multiple CPUs in a CMP environment. An additional
challenge is that atomic transactions (e.g., uninterruptable
write-then-read) are not currently possible on JOP without
breaking the requirements of the Real-Time Specification for
Java (RTSJ), which does not permit disabling interrupts
within a thread. The control channel interface (CCI) works
around this problem and avoids any need for a global lock
by tolerating pre-emption at any time.

Messages are 32-bit words with the structure shown in
Figure 9. The CCI contains a single message register used
for sending and receiving. Messages written to this register
are guaranteed to traverse the ring network until they reach
a co-processor with a matching identifier. The co-processor
may generate a message in reply; this will have the same
identifier, but the reply bit will be 1. Replies are captured by
the CCI and stored in the message register until the software
reads them. Figure 10 shows how this protocol is used for
(a) write operations and (b) read operations. The behavior
in the event of pre-emption is particularly interesting: the
loop in the transaction subroutine repeats the read operation
if the original reply is lost, as it would if (1) pre-emption
occurred between the write and read operation, and (2) the
pre-empting thread also used the CCI.

The Java code for a hardware method with n parameters
must send 2n + 1 messages (two for each parameter, since
payloads are 16-bits wide, plus one “start” message). Then,

// (a) write message to co - processor
public void _write(int message) {

control_channel.data = message;
}

// (b) read message from co - processor
public int _read(int message) {

reply_identifier = (message >> 16) | 0x8000;
reply = 0;
while (reply_identifier != (reply >> 16)) {

// send request: control_channel .data
// represents a hardware register; each
// read/write access is a command for the CCI.
control_channel.data = reply_identifier << 16;

// receive a reply:
reply = control_channel.data & 0x7fffffff;
// "while" condition checks that we received
// the correct reply for our request.

}
return reply;

}

Figure 10: Java code to access co-processor registers
via the CCI for (a) writes, and (b) reads.

public void _wait_completed(int start_message) {
reply_identifier = (start_message >> 16) | 0x8000;
reply = 0;

while (((reply & 1) == 0)
|| (reply_identifier != (reply >> 16))) {

control_channel.data = reply_identifier << 16;
reply = control_channel.data & 0x7fffffff;

}
}

Figure 11: Java code to poll for co-processor comple-
tion; completion is signaled when bit 1 of the status
register is set.

the Java code waits for completion, polling a co-processor
register with repeated read operations (Figure 11). The
number of iterations of this loop depends on the co-processor
functionality. Following completion, further code reads back
a return value (if any). This requires two read operations
(Figure 10). Provided that the thread is not pre-empted,
these two “while” loops will execute only once. Figure 12
shows the process used for the mac1 method; this code is
automatically generated from the IDL description.

The polling process is used for compatibility with the
RTSJ, where CPUs are required to execute the highest-
priority threads that are runnable. To avoid problems caused
by lower-priority threads executing during hardware method
execution, the hardware method is notionally “executed” on
the CPU that calls it.

5.2 WCET Analysis of Java Code
Phases 1 and 3 of Figure 6 are easily analyzed by a WCET

tool, such as the WCA software distributed with JOP [28].
This code is linear and executes in constant time. Even the
code that obtains return values (in Phase 3) executes in con-
stant time if there is no pre-emption, because pre-emption
is the only effect that could cause the loss of a control chan-
nel message, so each read message loop executes only once.
WCET analysis conventionally assumes that each thread ex-

public int mac1(int size , int[]alpha , int[]beta) {
// convert parameters
int_hw_size=size;
int_hw_alpha=Native.rdMem(Native.toInt(alpha));
int_hw_beta=Native.rdMem(Native.toInt(alpha));
// load parameters
_write (0 x1010000 |(((_hw_size)>>0)&0 xffff));
_write (0 x1810000 |(((_hw_size)>>16)&0 xffff));
_write (0 x1020000 |(((_hw_alpha)>>0)&0 xffff));
_write (0 x1820000 |(((_hw_alpha)>>16)&0 xffff));
_write (0 x1030000 |(((_hw_beta)>>0)&0 xffff));
_write (0 x1830000 |(((_hw_beta)>>16)&0 xffff));
// start
_write (0 x1000001);
_wait_completed (0 x1000000);
// get result
int _hw_ret = (_read(0 x1840000) << 16)

| _read(0 x1040000);
// convert result
int _ret = _hw_ret;
return _ret;

}

Figure 12: Java code for hardware method mac1,
showing the control channel message sequence.

ecutes without pre-emption, since higher-level analysis ac-
counts for this overhead [24]. The single iteration of the
read operation loop is expressed by the loop bound annota-
tion “// @WCA loop=1”.

The only part of the Java code with a non-constant execu-
tion time is Phase 2: the completion loop (Figure 11). This
requires another loop bound annotation, which must bound
the number of iterations according to the worst-case com-
pletion time of the co-processor. Equation 1 can be used to
calculate the upper bound. Let i be the WCET of a single
iteration of Figure 11, c the WCET of the co-processor op-
eration, and b the upper bound on the number of iterations:

b = dc

i
e (1)

i depends on JOP. It is a constant value because the comple-
tion loop can be implemented without any bytecodes that
access external memory. On current JOP CPUs, i = 49. c
depends on the co-processor functionality, the control chan-
nel architecture and the memory subsystem. For example,
a co-processor that requires c = 1000 clock cycles will cause
Figure 11 to iterate at most b = 21 times. The loop bound
annotation “// @WCA loop<=21” would be used.

5.3 WCET Analysis of Co-processors
The WCET c is highly dependent on the co-processor

function, and there is no standardized way to compute it.
By analogy with a software WCET, it is the time required
by the function to do a task, as measured from initiation
(e.g. assertion of method_mac1_start) to completion (e.g.
method_mac1_running is cleared). This time is distinct from
the propagation delay through the co-processor logic gates,
which determines the maximum frequency of the hardware,
but provides no information about the number of clock cy-
cles required to execute a function. Two options exist: (1)
the WCET can be calculated using knowledge about the co-
processor implementation and the surrounding architecture,
or (2) the WCET can be determined by measurement.

The former approach is likely to be time-consuming, and
must be repeated if the architecture is changed. The latter

approach would not be suitable for a general program be-
cause of the difficulty of determining the input conditions
that maximize execution time; it is only possible in the spe-
cial case of a single-path program [23], where the program
behavior is the same for all input conditions. However, co-
processors are similar to this special case. Their architecture
can ensure that timing is either independent of the input
data (c is constant), or dependent only on the size of the
input needing to be processed. An example of the first cat-
egory would be a co-processor that acts on fixed-size data,
such as discrete cosine transform (DCT) co-processors for
image compression [33]. An example of the second category
would be a co-processor that acts on a variable-sized vector
of data, such as a symmetric encryption co-processor that
encrypts a data buffer. For this case, c is defined as:

c = k1 + k2s (2)

In equation 2, k1 and k2 are constant, and s is the size of the
input. Naturally, it is possible to create co-processors that
do not exhibit this model of behavior: a hardware imple-
mentation of a non-linear-time algorithm such as Quicksort
would qualify. These are outside the scope of this paper.

For a co-processor with a linear dependence on the size of
the input s, a combination of the two approaches is likely
to be most successful. Consider the WCET of a hardware
method as E(s) for s input items. This is composed of two
parts: (1) a software overhead k3, used within phases 1 and 3
of Figure 6, and (2) the hardware execution time b (equation
1). Hence:

E(s) = k3 + b (3)

Substituting the definition of b (equation 1) and further sub-
stituting the definition of c (equation 2) gives:

E(s) = k3 + idk1 + k2s

i
e (4)

A combination of measurement and analysis gives k1, k2

and k3. k2 can be calculated by inspection of the internal
state machine of the co-processor: how many clock cycles are
required to process each data element? k1 can be calculated
by measuring the associated Java code and substituting the
measured time E(s) (for various s) into equation 4.

6. EVALUATION
In this section, the hardware methods scheme is evaluated

using WCET analysis. The evaluation is a comparison of
the WCETs that can be estimated for (1) software-only and
(2) combined software and co-processor implementations of
three different tasks. In each case, Java software is exe-
cuted on the JOP CPU. The examples in this section have
been chosen to illustrate cases where a hardware implemen-
tation can substantially improve performance (Section 6.1),
time-predictability (Section 6.2), or both (Section 6.3). Ad-
ditionally, Section 6.4 evaluates the process of implementing
software functionality using hardware methods.

6.1 Array Operations
A multiply-accumulate (MAC) function acts on two arrays

of numerical data as shown in Figure 13. WCET analysis of
this function is trivial in both software and hardware form:
the execution time has a linear dependence on the array
size. In this case, the advantage of a co-processor implemen-
tation is a substantial reduction in WCET. A co-processor

public int mac(int size , int[]alpha , int[]beta) {
int out = 0;
for (int i = 0 ; i < size ; i ++)
{

out += alpha [i] * beta [i];
}
return out;

}

Figure 13: Multiply-accumulate code.

public int search_max(int size , int[]data) {
int max = 0;
for (int i = 0 ; i < size ; i ++)
{

int d = data [i];
if (d > max) max = d;

}
return max;

}

Figure 14: Search maximum code.

can pipeline the tasks of fetching input data from memory,
multiplying data, and adding it to an accumulator.

This is demonstrated on JOP, where Figure 13 requires
730,334 clock cycles to process an array of size 10,000: 73
clock cycles per iteration, with a software overhead of 334
clock cycles. The same array requires 60,916 clock cycles
when the hardware method implementation of mac1 (Figures
1-3) is used instead; a twelve-fold reduction in WCET.

The co-processor behavior can be modeled by equation
4. In this model, the co-processor overhead k1 = 28, the
iteration cost k2 = 6, and the software overhead k3 = 842.
The overhead of the hardware method is almost three times
higher than that of the software implementation because of
the time taken to send parameters and receive return values,
but this cost is insignificant in relation to the time saved by
the lower iteration cost. The WCET is reduced by the co-
processor whenever the following inequality holds:

E(s) < 73s + 334

k3 + idk1 + k2s

i
e < 73s + 334

842 + 49d28 + 6s

49
e < 73s + 334 (5)

This simplifies to s > 8; a MAC operation involving as few
as nine items will have a lower WCET if implemented us-
ing a co-processor, because the time saved by the hardware
method will make up for the additional overhead.

6.2 Infeasible Paths
WCET estimates can become inaccurate in the presence of

infeasible paths, which are paths through the program that
are possible according to the structure of the program, but
not feasible when its inputs and semantics are taken into
account [12].

Figure 14 gives a function to find the maximum integer
within an array. In this function, an array that never trig-
gers the condition d > max will lead to best-case timing,
while an array that triggers the condition on every itera-
tion (e.g., [1, 2, 3, ...]) will lead to worst-case timing. A

public int bit_count1(int size , int[]data) {
int count = 0;
for (int i = 0 ; i < size ; i ++) {

int d = data [i];
for (int j = 0 ; j < 32 ; j ++) {

if ((d & 1) == 1) count ++;
d = d >> 1;

}
}
return count;

}

Figure 15: Bitcount: näıve implementation.

public int bit_count2(int size , int[]data) {
int count = 0;
for (int i = 0 ; i < size ; i ++) {

int d = data [i];
for (int j = 0 ; j < 4 ; j ++) {

count += lut [d & 255];
d = d >> 8;

}
}
return count;

}

Figure 16: Bitcount: improved implementation.

WCET tool must assume the second condition, leading to
a WCET of 450,308 when the function is executed with a
10,000 element array on JOP. However, this execution path
may be infeasible if certain properties of the array hold. For
instance, if every element of the array is less than 10, then
the condition can be true on at most 9 occasions (for val-
ues 1 through 9). In that case, the true WCET is 420,184,
but it is not trivial for a WCET tool to make use of this
semantic information, so the overestimate of 450,308 must
be used. This is a trivial example of an infeasible path;
the implications would be more severe if the loop contained
more conditional operations, or if the loop was nested within
another.

WCET analysis can attempt to detect infeasible paths [12]
and some infeasible path information can be specified by
annotations. These techniques do not cover all cases: for
example, it is not possible to specify that every array ele-
ment is less than 10. Hardware implementations provide a
better solution because multiple paths can be executed in
parallel so that there is no timing difference between true

and false conditions. A hardware method implementation
of Figure 14 has an execution time of 30,765 clock cycles for
10,000 elements, regardless of the values of those elements.
In addition to a fourteen-fold reduction in WCET, the in-
feasibility problem is entirely solved. This approach could
scale up to support complex conditional structures with no
difficulty from higher levels of loop nesting.

6.3 Naturally Parallel Operations
Figure 15 gives a function that counts the number of non-

zero bits in an array. This näıve implementation iterates
through each bit of each word; the WCET for a 10,000 el-
ement array is 12,300,308. The execution time also varies
according to the number of non-zero bits because of the d &

1 condition, from a minimum of 1102 to a maximum of 1230

clock cycles per iteration.
In this case, a more efficient and predictable implementa-

tion is possible in Java (Figure 16). This uses a lookup ta-
ble (lut) to obtain the number of non-zero bits in each byte.
Here, the WCET for a 10,000 element array is 2,650,308: 265
clock cycles per iteration, independent of the array contents,
with an overhead of 308 clock cycles per call. However, the
improved implementation uses five memory accesses per it-
eration instead of one, which could significantly increase the
cost of execution in some systems [34].

A hardware method would be a better choice, since the
lookup table can be replaced by an adder tree capable of
counting the number of non-zero bits in a single clock cy-
cle. A hardware method implementation of bitcount has a
WCET of 30,765 for 10,000 elements: a WCET reduction
of over 86 times in comparison to Figure 16. This can be
modeled by equation 4, with co-processor overhead k1 = 22,
iteration cost k2 = 3, and software overhead k3 = 728. The
WCET is still reduced by the co-processor if the following
inequality holds:

E(s) < 265s + 308

k3 + idk1 + k2s

i
e < 265s + 308

728 + 49d22 + 3s

49
e < 265s + 308 (6)

This simplifies to s > 1. Although the overhead of the hard-
ware method is higher than a pure software implementation,
arrays holding more than one element are still processed
with a lower WCET using the hardware method.

6.4 Discussion
The examples given in Sections 6.1-6.3 show that hard-

ware methods permit embedded real-time programs to take
advantage of the speed and time-predictable operation of
hardware. The cost of accessing Java variables is minimal,
being limited to a fixed “software overhead” (incurred by
phases 1 and 3 of Figure 6). Memory accesses can be per-
formed at the speed permitted by the FPGA hardware (3
clock cycles each in this environment [35]).

The annotation of the bound for the polling loop is not an
ideal solution for WCET analysis. The user must determine
the correct bound knowledge of the execution time of a sin-
gle loop iteration and the execution time of the hardware
method is needed. Both values depend on the actual imple-
mentation of the processor and the hardware method. To
be independent of the processor implementation, a new an-
notation for the hardware method’s execution time in clock
cycles would be preferable.

Unfortunately, the quantitative comparisons between pure
software and hardware method WCETs do not give the
whole picture, because they provide no representation of the
engineering process. Three points should be made about
this. Firstly, the hardware methods for mac, search_max

and bit_count can be used as plug-in replacements for the
methods shown in Figures 13, 14 and 16, because they have
exactly the same interface. That is, no special procedure is
needed to call a hardware method.

Secondly, it is easy to add new hardware methods to a sys-
tem, because the control channel can be expanded to include
up to 127 co-processors just by adding new co-processors
to the ring network (Figure 8). In this case, a JOP sys-
tem was extended to first include mac_coprocessor, and

then extended further to include bitcount_searchmax, a co-
processor implementing two hardware methods. Each exten-
sion amounted to (1) an insertion in the ring network, and
(2) an increase in the number of ports provided by a memory
arbiter.

Finally, co-processors are not necessarily difficult to im-
plement, as they can be generated by user-friendly languages
and tools such as Handel-C [1] and Simulink [21]. A hard-
ware method with no array parameters does not access mem-
ory; this is particularly simple to create, because it acts only
on the signals produced by the generated interface compo-
nent (Figure 5). Co-processors that do access memory are
only slightly more complex, and it is easy to extend a tem-
plate (e.g., mac_coprocessor) with whatever functionality is
required to implement a new hardware method (e.g., bit-
count).

7. CONCLUSION
Hardware methods provide a straightforward, flexible and

easy-to-use mechanism for extending embedded real-time
Java code with co-processors. The evaluation has high-
lighted both the performance and time-predictability ben-
efits of hardware implementations of Java functions. Hard-
ware methods can be used to reduce the WCET of code, but
also to improve the quality of WCET estimates by solving
the infeasible path problem and making time-predictable use
of the natural parallelism in code.

Hardware methods appear to be Java methods, so they
can be easily used from any code. The process of extend-
ing a system with new hardware methods is simple, given
VHDL or Verilog implementation skills. The process is facil-
itated by the use of an interface component generated from
a platform-independent interface description language.

Currently, a second implementation of hardware methods
is being written for FPGAs connected to a PCI Express
interface. This will allow hardware methods to be used
by Java software running on a conventional PC. The new
implementation will use the IDL described in this paper,
demonstrating that the paradigm is portable to other Java
environments.

Acknowledgment
This work has been supported by the JEOPARD project
under grant agreement number 216682 which is funded by
the European Commission Seventh Framework Programme.

8. REFERENCES
[1] Agility DS. Handel-C Language Reference Manual.

http://agilityds.com/literature/HandelC_

Language_Reference_Manual.pdf.

[2] J. Agron, W. Peck, E. Anderson, D. Andrews,
E. Komp, R. Sass, F. Baijot, and J. Stevens.
Run-Time Services for Hybrid CPU/FPGA Systems
on Chip. In Proc. RTSS, pages 3–12, Washington, DC,
USA, 2006. IEEE Computer Society.

[3] P. J. Ashenden. The Designer’s Guide to VHDL.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2001.

[4] N. Audsley and I. Bate. Synthesis of Legacy
Real-Time Ada Software to FPGA. In Proc. RTCSA,
pages 21–40, 2004.

[5] N. Audsley, I. Bate, and M. Ward. Mapping
Concurrent Real-Time Software to FPGA. In
Proceedings of the 3rd U.K. ACM SIGDA Workshop
on Electronic Design Automation, 2003.

[6] C. Austin and M. Pawlan. JNI Technology. In
Advanced Programming for the Java 2 Platform, pages
207–230, 2000. http://java.sun.com/developer/
Books/j2ee/advancedprogramming/jni.pdf.

[7] D. M. Beazley. Swig: an easy to use tool for
integrating scripting languages with c and c++. In
Proc. TCLTK, page 15. USENIX Association, 1996.

[8] A. Borg, R. Gao, and N. Audsley. A co-design
strategy for embedded java applications based on a
hardware interface with invocation semantics. In Proc.
JTRES, pages 58–67, 2006.

[9] A. Filippov. Building an Ogg Theora camera using an
FPGA and embedded Linux (accessed 26 April 07).
http://www.linuxdevices.com/articles/

AT3888835064.html, 2002.

[10] Git. Version control system. http://git-scm.com/.

[11] F. Gruian, P. Andersson, K. Kuchcinski, and
M. Schoeberl. Automatic generation of
application-specific systems based on a
micro-programmed java core. In Proceedings of the
20th ACM Symposium on Applied Computing,
Embedded Systems track, Santa Fee, New Mexico,
March 2005.

[12] J. Gustaffson, A. Ermedahl, and B. Lisper.
Algorithms for infeasible path calculation. In Proc.
WCET, pages 1–6, 2006.

[13] D. Hardin, M. Frerking, P. Wiley, and G. Bollella.
Getting down and dirty: Device-level programming
using the real-time specification for Java. In
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2002), pages 457–464, 2002.

[14] R. Heckmann, M. Langenbach, S. Thesing, and
R. Wilhelm. The influence of processor architecture on
the design and the results of WCET tools. Proc.
IEEE, 91(7):1038–1054, 2003.

[15] T. Henties, J. J. Hunt, D. Locke, K. Nilsen,
M. Schoeberl, and J. Vitek. Java for safety-critical
applications. In 2nd International Workshop on the
Certification of Safety-Critical Software Controlled
Systems (SafeCert 2009), Mar. 2009.

[16] B. Huber. Worst-case execution time analysis for
real-time Java. Master’s thesis, Vienna University of
Technology, Austria, 2009.

[17] M. Hubner and J. Becker. Exploiting dynamic and
partial reconfiguration for FPGAs: toolflow,
architecture and system integration. In Proc. SBCCI,
pages 1–4, 2006.

[18] Ingo Proetel. Re: Use of JNI as part of a
Java/co-processor interface. Email on JEOPARD
mailing list, 30 May 2008.

[19] I. H. Kazi, H. H. Chen, B. Stanley, and D. J. Lilja.
Techniques for obtaining high performance in Java
programs. ACM Comput. Surv., 32(3):213–240, 2000.

[20] T. Lundqvist and P. Stenström. Timing anomalies in
dynamically scheduled microprocessors. In Proc.
RTSS, page 12, 1999.

[21] Mathworks. Simulink - Simulation and Model-Based
Design.
http://www.mathworks.com/products/simulink/.

[22] C. Pitter. Time-Predictable Java Chip-Multiprocessor.
PhD thesis, Vienna University of Technology, Austria,
2009.

[23] P. Puschner. Is worst-case execution-time analysis a
non-problem? – towards new software and hardware
architectures. In Proc. WCET, 2002.

[24] P. Puschner and A. Burns. Guest editorial: A review
of worst-case execution-time analysis. Real-Time Syst.,
18(2-3):115–128, 2000.

[25] M. Schoeberl. A Java processor architecture for
embedded real-time systems. Journal of Systems
Architecture, 54/1–2:265–286, 2008.

[26] M. Schoeberl. JOP Reference Handbook. Number
ISBN 978-1438239699. CreateSpace, 2009. Available
at http://www.jopdesign.com/doc/handbook.pdf.

[27] M. Schoeberl. Time-predictable computer
architecture. EURASIP Journal on Embedded
Systems, vol. 2009, Article ID 758480:17 pages, 2009.

[28] M. Schoeberl and R. Pedersen. WCET analysis for a
Java processor. In Proceedings of the 4th International
Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES 2006), pages 202–211,
New York, NY, USA, 2006. ACM Press.

[29] M. Schoeberl, C. Thalinger, S. Korsholm, and
A. Ravn. Hardware Objects for Java. In Proc. ISORC,
pages 445–452, 2008.

[30] E. T. Silva, D. Andrews, C. E. Pereira, and F. R.
Wagner. An Infrastructure for Hardware-Software
Co-Design of Embedded Real-Time Java Applications.
In Proc. ISORC, pages 273–280, 2008.

[31] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels,
G. Kuzmanov, and E. M. Panainte. The Molen
Polymorphic Processor. IEEE Trans. Comput., pages
1363–1375, November 2004.

[32] Verilog.com. Verilog Resources.
http://www.verilog.com/.

[33] G. K. Wallace. The JPEG still picture compression
standard. Commun. ACM, 34(4):30–44, 1991.

[34] J. Whitham and N. Audsley. The Scratchpad Memory
Management Unit for Microblaze: Implementation,
Testing, and Case Study. Technical Report
YCS-2009-439, University of York, 2009.

[35] Xilinx. Virtex-4 Family Overview. Datasheet DS112,
Xilinx Corporation, 2007.

Appendix
The described design is open-source under the GNU GPL.
The source can be downloaded with git [10]:

git clone git:// www.soc.tuwien.ac.at/jop.git

The build process of JOP and the accompanying tools is de-
scribed in detail in Chapter 2 of the JOP Reference Hand-
book [26].

Hardware method support can be found within the vhdl/-
jeopard directory. Files ending in .def within this directory
are processed as IDL code (e.g. Figure 1) by the build.py

program, which generates both VHDL and Java code in ap-
propriate places within the JOP source tree. A uni-processor
or CMP build for the Xilinx ML401 board can be carried out
using the build program in xilinx/ml401a; the number of
CPUs can be set in vhdl/top/jop_ml401cmp.vhd and the
arbiter type can be selected in xilinx/ml401a/ml401.prj.
The Quartus project jpd_cyc12 contains a configuration of
a single JOP with two MAC hardware methods for an Altera
Cyclone EP1C12 based board (dspio).

