
A SELF-OPTIMISING SIMULATOR FOR A
COARSE-GRAINED RECONFIGURABLE ARRAY

Jack Whitham and Neil Audsley
Real-Time Systems Group

Department of Computer Science
University of York, York, YO10 5DD, UK

jack@cs.york.ac.uk

Keywords: CGRA, Simulation

Abstract

This paper describes the implementation and testing of a high-
speed simulator for a reconfigurable processor architecture
named MCGREP. The architecture is based on a coarse-grained
array of small processors controlled by reconfigurable mi-
crocode. A high-speed simulator is needed to allow complex
experiments to be carried out on MCGREP, involving large ap-
plications and time-consuming computations.

Contributions include descriptions of methods for generating,
using and testing a simulator for a coarse-grained reconfig-
urable architecture (CGRA). Special issues that are handled
include a requirement to convert MCGREP microcode into na-
tive code at any time during execution, and a need to support
architectural extensions for future experiments.

1 Introduction

MCGREP [27] is an array of simple processors, organised
in the form of acoarse-grained reconfigurable architecture
(CGRA) [8, 26]. Both fine- and coarse-grained reconfigurable
architectures consist of arrays of processing nodes connected
by a network of routing elements.

Coarse-grained architectures differ from fine-grained architec-
tures in that each node is capable of operating upon more than
a few bits at a time. The reduction in granularity brings a num-
ber of benefits, such as easier programmability [8] and fast lo-
cal reconfiguration [22]. In the MCGREP model, the CGRA
can act as a general-purpose processor that interprets RISCma-
chine instructions. However, it can also be programmed with
application-specific configurations that can be used to be used
to speed up computational bottlenecks (hotspots) in applica-
tions.

Application-specific function accelerators have long been
recognised as a good way to speed up overall performance [18].
These may be included as fixed hardware devices (ASICs), as
processor extensions [6], or as run-time reprogrammable de-
vices [10, 14]. Reconfigurable hardware platforms remove lim-
itations on the number of accelerators that can be supportedby

allowing available hardware to be virtualised.

Research involving MCGREP architectures requires software
tools to build CGRA configurations, and working models im-
plemented in either hardware or software for experiments.
Simple initial versions of all of these components have been
written, but these initial versions are unsuitable for large-scale
experiments involving complex applications.

In particular, the MCGREP simulator is not sufficiently fast
to execute a Just-in-Time (JIT) compiler. The JIT compiler is
used to move pure software functions onto CGRA configura-
tions, effectively optimising an application for the MCGREP
platform. Unfortunately, the initial version of the MCGREP
simulator cannot execute the JIT compiler in a reasonable time
frame, as millions of instructions are needed for each JIT com-
pilation, and the initial simulator executes only a few thousand
instructions per second. Thus, the JIT compiler has to be run
in a test harness outside of MCGREP, and online “self” opti-
misation cannot be tested. This is just one example of a com-
plex application that cannot effectively be executed in theini-
tial simulator.

This paper describes the implementation and testing of a new
simulator for MCGREP architectures, which has far better per-
formance but retains implementation detail and capabilities for
extension and testing. The general contribution is a descrip-
tion of some simple methods for generating, using, and testing
a high-speed CGRA simulator that is compiled to native code.
The contribution to the MCGREP project is a fast system for
automatic testing and future experimentation.

Section 2 describes related work and sources used. Section 3
describes the MCGREP architecture, leading to the description
of the initial simulator in section 4. Requirements for the new
simulator are described in section 5, followed by implementa-
tion details. Section 6 describes the tests used to show correct-
ness, and section 7 evaluates the approaches used against the
implementation requirements. Section 8 concludes.

2 Previous Work

Application-specific devices are commonly used in both em-
bedded systems and home computers. Historically, embedded

systems have used CPUs that are optimised for particular task
types, such as DSPs, and today some use CPUs that can be
adapted to applications, such as Xtensa processors [6]. Home
computers also include some application-specific devices such
as graphics accelerators.

All of these devices are fixed. If the processors currently given
application-specific tasks could be reconfigured, they could be
reused by other applications. Hardware devices could be vir-
tualised and instantiated from memory or disk when required.
In this way, an effectively unlimited set of configurations could
be supported.

The program for a hardware device is called aconfiguration. If
this can be changed at all, the device isreconfigurable. Some
devices may berun-time reconfigurable, allowing them to be
programmed with new functions during execution.

In section 2.1, reconfigurable hardware approaches are sur-
veyed in general. This is followed by an examination of simu-
lation techniques and existing simulators in sections 2.2 to 2.5.

2.1 Reconfigurable Hardware

Reconfigurable hardware devices are usually built upon an ar-
ray of configurable processing elements, linked by a communi-
cation network.

The most well-known devices are FPGAs, which are intended
to be as generic as possible, supporting many different types
of logic circuit. These are fine-grained reconfigurable archi-
tectures, because most logic elements are as primitive as pos-
sible, providing simple combinatorial functions and single-bit
registers. FPGA configurations are generated by a complex
resource-intensive process that includes heuristic search for
placement and routing of elements [3].

Some FPGAs are run-time reconfigurable, and this has been
used to create virtual hardware devices. The Molen [10] project
exploits run-time reconfiguration, but the configurations must
be generateda priori using workstation tools. In contrast, the
Warp [14] project includes online generation of configurations
using a JIT compiler that targets an FPGA. However, this pro-
cess is still reported to be resource intensive, despite theuse of
simplified tools [15].

Coarse grained reconfigurable arrays (CGRAs) are similar to
FPGAs but the processing elements implement high-level func-
tions directly: often taking the form ofarithmetic-logic units
(ALUs) [8, 26]. This simplifies configuration building, which
may avoid heuristic search entirely by use of greedy algo-
rithms (PipeRench [22]) while others may use tree matching
algorithms (Garp [9]) or scheduling algorithms (Mei [16]).It
also simplifies run-time reconfiguration, which may be even be
done on every clock cycle, as in the PipeRench architecture,
and in the experimental MCGREP architecture [27].

2.2 Architectural Simulation

Simulation is the process of modelling the behaviour of one
system using another. Computers are often used to carry out

Performance

Detail Flexibility

Pick two

Figure 1: The tradeoffs in simulator design. Performance is
speed of simulation. Detail minimises risk from differences
between the microarchitecture and the simulator. Flexibility
allows experiments with related architectures.

simulations of both natural phenomena and man-made pro-
cesses to test the eventual results of particular decisions. Sim-
ulation allows experimentation with a new design while only
parts of the design are complete.

For example, aerospace engineers will experiment with small
scale models and computer-generated models of aircraft before
building a full-size prototype: this allows early design work
to be evaluated before expensive construction work. Similarly,
in this application, simulation allows hardware design proto-
types to be tested without the expense of building any hardware
devices. Simulators also facilitate experiments and automatic
testing, because the simulated device can be manipulated by
computer programs.

Architectural simulatorsare programs that execute on ahost
system and provide a model of a CPU. They are often classed
as eitherfunctionalor performancesimulators [23]. Functional
simulators are concerned with replicating the functionality of
a CPU (theinstruction set architecture, ISA) without concern
for precisely replicating the methods used by the CPU (themi-
croarchitecture). This simulates what a programmer would ex-
pect the CPU to do - all machine instructions produce the cor-
rect results. Performance simulators also do this, but by simu-
lating the microarchitecture itself, which allows accurate tim-
ing information to be obtained and provides a more detailed
simulation.

The tradeoffs in simulator design are illustrated in Figure1,
from [23]. The three factors cannot be optimised simultane-
ously.

2.3 Existing Simulators

Existing simulators target many common types of CPU, often
also simulating memory and some types of input/output device.
The SimpleScalar [4] simulator suite, intended for industrial
and research use, contains programs to simulate ARM proces-
sors and a MIPS-like CPU (PISA). These programs simulate
processors at different levels of abstraction [4, 23], as shown
in Table 1. More detailed simulators produce more accurate re-
sults, but are slower, allowing the user to choose an appropriate
tradeoff from Figure 1.

Simulators are extensively used for embedded development

Name Speed Detail Description
sim-fast Most Least Functional, no

checks.
sim-safe Functional, with

checks.
sim-uop Functional, simulates

part of microarchi-
tecture.

sim-outorder Least Most Performance, simu-
lates entire microar-
chitecture.

Table 1: The different types of simulator in the SimpleScalar
toolset. These simulators are sorted in order of timing accuracy.

work. The OpenRISC development kit [11] includes a func-
tional simulator for the OpenRISC processor, which also sim-
ulates some peripherals. The ARMulator is an official perfor-
mance simulator from ARM Limited [1]. Bochs [12] is a func-
tional x86 simulator for development work.

Simulators are also used for office tasks and entertainment.
PowerPC versions of Virtual PC simulate an x86 processor
with PC peripherals [2]. The Dosbox [5] simulator provides an
DOS-era PC environment for retro gaming. These simulators
are functional as high performance is essential for interactive
use.

2.4 Simulator Validation

Architectural simulation carries a risk of introducing error
through differences between the simulator implementationand
the device being simulated.

Some errors are easily detectable at the functional level, as they
produce incorrect results as instructions execute. Other imple-
mentation errors may be hidden by the architecture, manifest-
ing themselves as timing errors. An erroneous implementation
of a cache would fall into this category - the simulated device
would produce correct results, but with incorrect timing be-
haviour.

Both types of error can be detected by comparison with a ref-
erence implementation. SimpleScalar was verified against Ar-
mulator [24] and real hardware. The verification involved ran-
dom testing, by feeding random instructions and states as input
to the simulator and the reference implementation (Figure 2).
Performance testing of elements that can’t be modified exter-
nally, such as caches, can be performed in a similar way - but
it may be necessary to use a sequence of instructions (such as
a benchmark program) rather than a single one.

2.5 High Performance Simulation

Simulation involvestranslating simulated code or microin-
structions into the native code of the host. Usually this is done
by interpretation: a program examines the simulated code and
takes appropriate action for each instruction. For higher per-

=

and state

Random instruction

Correct?

Simulator
Reference

implementation

Figure 2: Verification of a simulator by random testing against
a reference implementation, as used in the development of Sim-
pleScalar.

formance,dynamic translation(JIT compilation) can be used
to replace simulated code with native code.

This technique is most famously used by the Java virtual ma-
chine [25], as a part of simulating a Java CPU. It is also used
by the Bochs x86 simulator and Virtual PC. These simulators
normally operate by interpretation, but can run JIT compila-
tion on computational bottlenecks to make the most commonly
used code run faster.

3 MCGREP Microcoded CGRA

MCGREP is a CGRA with three levels of configuration. The
high-level configurationspecifies the layout of CGRA nodes
and their interconnections. Themid-level configurationcon-
trols the run-time operation of each node. Thelow-level con-
figurationspecifies the operations available at each node. All
three of these can be changed at build time, when the processor
is created. However, the mid-level configuration can also be
reprogrammed during run-time.

The MCGREP architecture is intended to be used to execute the
same tasks that are currently given to processors within embed-
ded systems. Experiments are needed to evaluate how closely
the architecture’s capabilities match up to this goal. Manyof
these experiments can be carried out very effectively on a simu-
lator, with the added advantage that every level of configuration
can be adjusted easily.

3.1 Details

Figure 3 illustrates an array of nine MCGREP nodes, with an
interconnection described by the high-level configuration. Fig-
ure 4 illustrates a single MCGREP node, with a function set
determined by the low-level configuration.

Each MCGREP node contains a processor. Each has a local
register file and a time-multiplexed configuration store, asused
in the PipeRench [22] processor. This configuration store ac-
tually contains a program, specified by the mid-level config-
uration. This program can be changed at run-time, providing

Figure 3: A member of the MCGREP architecture class, with
nine nodes.

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

port 0

port 0

port 1

port 1

port 0

port 0 port 1

port 1

mux A mux B

alu/mux control

reset/start control from master

instruction input

address in

REGISTER BANK 1REGISTER BANK 0
INSTRUCTION
MEMORY

uPC CTRL

ALU

C
G

R
A

 IN
T

E
R

C
O

N
N

E
C

T

Figure 4: An MCGREP node.

run-time reconfiguration. It is amicroprogrambecause it spec-
ifies processor operations directly with no layer of abstraction.
Instructions within the microprogram consist ofmicrocode.

Microprograms have been used to control the internal opera-
tions of processors for many years [19] - however, they cannot
normally be redefined. Microprograms direct processor opera-
tions at a very low level, usually with a direct mapping between
microcode bits and control lines.

In MCGREP, each microprogram is a sequence of hardware
configurations that carry out some task. New microprograms
can be uploaded into any node at any time, allowing the plat-
form to adapt to new applications. Complete reconfigurationof
each node takes place every machine cycle, from the microcode
configuration.

The physical array in Figure 3 may be dynamically split into
virtual arrayswhich cooperate to run a particular task. Virtual
array configurations may be produced by any of the CGRA
configuration generation techniques described in [8], but the
current approach is the use of a modulo scheduler as proposed
by Mei [16]. However, the details of this process are outside
the scope of this paper.

Virtual arrays may be any size, so they can fit anywhere within
the physical array. Physical adjacency is required for cooper-
ating nodes to permit inter-node communication, but this only
requires a virtual array to be composed of contiguous blocks.

7084: 8c e4 00 00 l.lbz r7,0x0(r4)
7088: 9c a5 ff ff l.addi r5,r5,0xffffffff
708c: d8 06 38 00 l.sb 0x0(r6),r7
7090: 9c 84 00 01 l.addi r4,r4,0x1
7094: bc 25 ff ff l.sfnei r5,0xffffffff
7098: 13 ff ff fb l.bf 7084 <_memcpy+0x1c>
709c: 9c c6 00 01 l.addi r6,r6,0x1

Figure 5: A sequence of conventional opcodes (frommemcpy,
which is a hotspot in thecrc32 benchmark program).

3.2 Operation

MCGREP nodes have the ability to run a machine code via an
interpreter microprogram. This enables them to execute code
that is not specific to MCGREP.

One MCGREP node is active at boot up. This node is referred
to as thelocal node for the purposes of this discussion: all
others are considered to beremote. The local node begins ex-
ecuting machine code from memory in the manner of any con-
ventional processor. There is a three stage pipeline, and anen-
tire RISC instruction set can be supported. This is sufficient to
run any operating system or application compiled for the cor-
rect instruction set architecture. However, execution speed is
bounded by memory latency and no parallelism is possible.

MCGREP currently interprets OpenRISC machine code. Be-
cause this interpretation is hardware-assisted, it executes at ap-
proximately the same speed as an OpenRISC without an in-
struction cache [27].

The OpenRISC architecture has reserved some areas of the op-
code space for extended instructions. In MCGREP, one of these
areas is defined for “jumps into microcode”, with the low-order
bits of the opcode used to select the microcode address. These
opcodes act as a sort of system call, allowing machine code to
trigger a microcode function.

To obtain maximum throughput, programs can upload new mi-
croprograms into the microprogram store of one or more nodes,
and then trigger their execution. This permits application-
specific operations to be encoded as single instructions. Such
microprograms can span multiple nodes, in order to take ad-
vantage of instruction-level parallelism.

This is particularly useful when a hotspot, or computational
bottleneck, is reached. This is an area of application code that
is commonly used [17]. The efficiency of hotspot execution
has a greater effect on an application’s execution time thanthe
efficiency of any other code. Figure 5 shows a sample hotspot
from memcpy.

In MCGREP, hotspot optimisation requires a process to gener-
ate microcode from original RISC machine code. Translating
a program from one language to a lower level language is nor-
mally called compilation: so amicrocode compileris needed.
The microcode compiler must produce a series of operations
that accomplish the same task as the hotspot in less time. Fig-
ure 6 shows such a sequence.

r5 −1

Add

r5

r4 1

Add

r4

r6 1

Add

r6

r4

r7

Load

r6 r7

Store

r5 −1

FLAG

Branch?

No

No

If Flag,
branch to

0
1

2

Return to machine code Return to machine code

3

C
G

R
A

 configurations

Not Equal?

Node 0 Node 1

Figure 6: Mapping of Figure 5 onto a sequence of MCGREP
configurations.

3.3 Compilation

The details of compilation are outside the scope of this paper.
Here, we regard the compiler as a black box which takes ma-
chine code as input and emits appropriate microcode for a vir-
tual array of one or more MCGREP nodes. This microcode can
then be uploaded to each MCGREP node via writes to a special
area of memory.

Early versions of MCGREP used a partially manual process
for this compilation, in which operations were scheduled onto
a virtual array by the user before microcode was generated.
More recently, a JIT compiler has been developed to handle
this task automatically, using modulo scheduling techniques as
proposed by Mei [16].

Microprograms have many advantages over machine code pro-
grams in MCGREP. They may access a much larger register
space - currently 512 registers per functional unit, which can
be preloaded with constant values that are used by code. They
can communicate with other nodes to fetch remote register val-
ues. They can execute twice as quickly on each unit if register
accesses are optimised. Microbranches are zero-cost. Theycan
also cause microprograms to begin executing on remote nodes
by sending a branch instruction to them.

4 Initial Simulator

MCGREP simulators cannot operate at the purely functional
level, as some of the simulators described in section 2.3 do.It is
necessary to execute microprograms in order to simulate MC-
GREP, because these can be changed. To do this, it is also nec-
essary to specify the operation of the individual hardware com-
ponents inside MCGREP, because each bit of the microcode
has a meaning only at the lowest level of operation. Thus, the
simulator has to be a performance simulator with an accurate
model of all parts of MCGREP. In the tradeoff diagram (Figure
1), detail must be selected.

Initial implementations of the MCGREP simulator concen-
trated on correctness, flexibility and clarity of code before per-
formance. A simple simulator architecture was used, as shown
in Figure 7, and the entire implementation was written in the
Python language [20]. Python is used to describe the config-
uration of an MCGREP processor, as it is a highly extensible
language that is ideal for this purpose. So it was natural to also
use it to build all tools relating to MCGREP, including the sim-

Simulator

Test driver Configuration
Microcode model

Interpreter

microcode
store

registers
& memory

1

2

Figure 7: Architecture of initial simulator. Arrows indicate
communication between components.

ulator. This simplifies interfaces between tools and makes it
easy for one tool to reuse components from another.

The core of the simulator is the interpreter (labelled “1”).This
is called once for every clock tick and every MCGREP node. It
fetches appropriate microcode from the configuration (labelled
“2”), and then interprets and executes that code. The perfor-
mance corner of the tradeoff diagram is lost, because each part
of the code must be mapped through one or more intermediate
codes: this happens very quickly in hardware, where layers of
abstraction are optimised away, but requires many operations
in software. An example is illustrated in Figure 8.

This problem is exacerbated by the use of the Python language.
Unfortunately, Python does not execute directly on the host
processor, but via an interpreter of its own (much like Java).
Interpreted code is always slower than natively executed code.
Conventionally, this problem is avoided by JIT compilation. A
JIT compiler for Python does exist [21], but the performance
increase from using it in this case is only a 2-3 times improve-
ment.

However, a flexibility advantage comes from the use of Python.
Each simulator component is a Python object that can be ex-
tended by subclassing. Thus, a basic simulator class type could
be extended with a more advanced simulator involving addi-
tional features. This was done to create simulators capable
of executing advanced tests and for semi-invasive debugging.
Such powerful capabilities would need to be retained in some
way in more advanced simulators. As in Figure 1, a tradeoff
point is reached between performance and flexibility.

5 Implementation

Performance problems in the initial simulator are identified as
coming from:-

1. Online interpretation of microcode (i.e. microcode is in-
terpreted as it is executed),

2. Online interpretation of the simulator itself.

Resolving these issues is one requirement for the new simula-
tor. However, a more important requirement is the retentionof

"fu_cmd"

microcode
..1100100110001001...

1100 − binary data

ARITH_ADD − internal symbol

+ (addition) − Python operator

outputinputs

func_unit
simulator

Interpret

Execute +

Decode
fu_cmd
codec

microcode
object

Get_Value

Figure 8: Steps taken to decode an ALU command from the
internal representation of microcode to an actual machine op-
eration (addition).

1 Detail The accuracy of the simulator,
2 Flexibility The extensibility of the simulator,
3 Performance The speed of the simulator.

Table 2: Requirements for the new simulator, in priority order.
The first requirement has the highest priority.

both flexibility and detail. As Figure 1 and its associated re-
search [23] state, it is not possible to maximise flexibility, de-
tail and performance, so performance can only be improved as
long as detail and flexibility are unaffected. Table 2 lists these
requirements.

The new simulator architecture is shown in Figure 9. In the
new architecture, some components are native code - that is,
they are implemented in the native machine code of the host
platform. The following sections discuss some of the compo-
nents of Figure 9.

5.1 Code Generator

The interpreter from Figure 7 is replaced with a code generator
(Figure 9, label “1”). This produces C code from microcode
descriptions. The code generator is an interpreter, but itsinter-
pretations areoffline: they are fixed code paths as soon as C is
generated. The example from Figure 8 is collapsed to a single
line of C code to perform an addition. The resulting C program
(Figure 9, label “2”) is used for simulation.

This approach avoids both performance problems identified in
the introduction. There is no online interpretation. Simulator
code is written in the native machine code of the host system.
However, flexibility could be lost as any update to microcode
must also require an update to the C program.

Interface
C/Python layer

Simulator

C Compiler

Test driver Configuration
Microcode model

Context

Core
Simulator core functions

C programCode Generator

Run RunHooks

Controller

C components

Python components

Native code components

microcode
store

registers
& memory

1

3

5

4

2

6

Figure 9: Architecture of fast simulator.

To retain this flexibility, the code generator and the program
it produces are both used by a simulation harness (Figure 9,
labels “3” and “4”). The simulation harness arranges for the
code generator to be reactivated when microcode is updated.
The simulated MCGREP can update its own microcode and
execute it.

The code generator is an extensible Python object, so adapta-
tions to the architecture can be made by subclassing it and the
other code generators it uses. It remains as flexible as the initial
simulator.

The code generator could produce machine code directly, as is
commonly done by JIT compilers [21]. But this would make
the simulator highly specific to a single host architecture,as
well as making development and debugging significantly more
difficult. Thus, the low-level tasks of code generation are left
to a C compiler.

5.2 Core

The simulator core (labelled “2” in Figure 9) presents a number
of external interfaces, for communication with the the simula-
tion harness (“3” and “4”).

One is a Run function. This continuously executes a simulation
until (1) a microcode update is required, (2) the program termi-
nates, or (3) an error occurs. Until one of these three events
occurs, execution takes place entirely within the Run function
or its callees. There are no calls to Python functions unless
hookshave been installed.

Hooks act as logic probes for testing. Now that the simulator
core is C, rather than Python, it cannot be arbitrarily extended.
Features can be added by extending the code generator, but this
would not be suitable for extensions that interacted with other
program components during execution, as these would need to
cross the C/Python language barrier. So hooks are provided to
formalise the extension process. They are functions that are

Name Description
register file General-purpose register values.
iword Instruction word register.
memory image Simulated RAM.
upc Microprogram counter register -

one per node.
lsu Contains state of load-store unit.
ucode updates List. Stores all writes to microcode

for later use by the code generator.
dirty table Marks dirty microcode (see section

5.4).

Table 4: Principal Context object fields.

import SimulatorInterface as SI
try:

SI.Attach(LIBRARY_NAME)

context = SI.Make_Context(MEMORY_IMAGE_NAME)

No operation (nop) hooks handle special simulator commands
SI.Set_Hook(context, NOP_Hook, SI.HOOK_NOP)

running = True
while (running):

rc = SI.Run_Dynamic(context)
running = not (rc in (SI.RC_EXIT, SI.RC_ERROR))

if (running):
Must have hit dirty microcode - update our notion
of the microcode store to match simulator.
Do_Microcode_Update(SI.Get_Microcode_Updates(context))

Rebuild library with new microcode, preserving
the context (which contains all state data).
SI.Detach()
Rebuild_C() # C program produced
Rebuild_Library() # Shared object produced
SI.Attach(LIBRARY_NAME)
Now resume execution with new microcode.

Simulation ends
finally:

SI.Detach()

Figure 10: Main loop for simulation. The simulator interface
(SI) is the component labelled “3” in Figure 9.

called by the simulator core in response to a particular event.
These can be used for testing and debugging.

Table 3 lists the hooks available in the current version and the
events that cause them. All of these are optional and are deacti-
vated by default. The core provides an interface to allow hook
functions to be registered.

An important part of the interface is the context object (labelled
“5”). The context object holds all information about the state
of an MCGREP processor (as partially listed in Table 4). This
object exists independently of the simulator core, so that the
core can be updated by the code generator without destroying
the processor state.

5.3 Interface

The simulator core is written in C and compiled to machine
code, but the rest of the MCGREP tools are written in Python
and compiled to Python byte codes. This division is illustrated
by the dividing lines in Figure 9.

A glue layer is needed to provide a Python interface to the core.

...
EA =0003ffcc PA =0003ffcc r7 =00000030 000064d8 l.sb 0x0(r6),r7
r4 =0000ae1c r4 =0000ae1c 000064dc l.addi r4,r4,0x1
r5 =0000000f 000064e0 l.sfnei r5,-1

SR =00008201 000064e4 l.bf -5
r6 =0003ffcd r6 =0003ffcd 000064e8 l.addi r6,r6,0x1
r7 =00000031 EA =0000ae1c PA =0000ae1c 000064d0 l.lbz r7,0x0(r4)
r5 =0000000e r5 =0000000e 000064d4 l.addi r5,r5,-1
EA =0003ffcd PA =0003ffcd r7 =00000031 000064d8 l.sb 0x0(r6),r7
r4 =0000ae1d r4 =0000ae1d 000064dc l.addi r4,r4,0x1
r5 =0000000e 000064e0 l.sfnei r5,-1

SR =00008201 000064e4 l.bf -5
...

Figure 11: Sample of OpenRISC simulator output (the kernel
of thememcpy function). The trace allows register writes and
program counter updates to be checked.

This is the job of the Interface (Figure 9, label “3”), which
translates C calls into a form that can be used directly from
Python. It also provides a wrapper to allow hook functions to
be written in Python.

This glue layer is written in C, but conforms to the Python spec-
ifications for modules written in native code. The Python API
is used to translate function calls and variable accesses between
Python and low-level C types.

The most essential feature of this glue layer is its ability to load
and unload the simulator core program from memory. This is
done using thedlopen anddlclose functions, which permit
shared objects (dynamically linked libraries) to be attached to
the memory space of a program at runtime. This allows the
simulator core to be rebuilt during simulation. These opera-
tions do not affect context objects, which can be passed be-
tween versions of the simulator core provided that they have
been produced for the same revision of MCGREP.

5.4 Simulator

At the top level of simulation, Python code is responsible for
recompiling and executing the core. This is done by the con-
troller (Figure 9, label “4”). The controller consists of a main
loop, shown in Figure 10, which executes the simulation until
an error occurs or the program terminates.

The main loop handles the situation in whichdirty microcode
has been reached: dirty meaning that the representation of the
microcode in the C program is out of date. In this event, regen-
eration and recompilation of the C program is required. These
are handled by theRebuild C andRebuild Library func-
tions respectively.

6 Correctness Verification

The simulator must operate correctly - that is, it must operate
in the same way that a hardware implementation would. This
section describes the steps taken to ensure this.

Two distinct types of operation are possible on MCGREP - ex-
ecution of microcode, and execution of machine code via mi-
crocode. Although both involve execution of microcode, these
modes are very different. The first type of microprogram is
a series of application-specific configurations used to acceler-
ate a task. The second type is an interpreter that fetches values

Name Description
HOOK DISPATCH PRE Called whenever the dispatch table (for interpreting machine code) is accessed.
HOOK TICK Called once per simulated clock cycle.
HOOK DESTROY Called when a context object is being garbage collected by Python.
HOOK ENTER UC Called in the event of a “jump to microcode” (see section 3.2).
HOOK NOP Called when an extended nop (no operation) instruction is executed. These are com-

mands to the simulator (e.g.exit).

Table 3: Types of hook provided by the simulator.

Simulator
MCGREP

Simulator
OpenRISC

Compare Registers

Trace

Correct?

Test program

Figure 12: Comparing MCGREP operation to reference Open-
RISC simulator trace.

from memory and executes commands based upon them. These
are discussed separately.

6.1 Testing the Interpreter

The SimpleScalar simulator was tested by comparison with a
reference implementation (section 2.4). In one case, the ref-
erence implementation was a real processor, in another, it was
another simulator. Similar tests can be performed on the MC-
GREP simulator.

The interpreter must behave functionally in the same way as an
OpenRISC processor [11], so a comparison can be made with
the OpenRISC simulator. Exact performance simulation is not
required here, but functional correctness is essential: machine
code must execute without error.

The OpenRISC simulator can emit a trace file listing all oper-
ations executed during the run-time of a test program. These
appear in the form illustrated in Figure 11. Operation of the
MCGREP simulator can be verified against this, as illustrated
in Figure 12.

The comparison is carried out as follows. The interpreter mi-
croprogram accesses a dispatch table when it decodes a new
instruction. This table gives the appropriate microcode address
for handling the current instruction word. At that time, thepro-
gram counter and the values of registers can be read. A hook
function (see section 5.2) is called by the simulator to notify
the test driver that a dispatch table access has occurred.

Name Description
aes Encryption benchmark.
crc32 Computes CRC-32.
jpeg Decodes a JPEG image.
sha Computes SHA-1 hash.
qsort Sorts a data set.
mad Decodes MP3 audio.
dijkstra Shortest-path algorithm.
g721 Audio encoder.

Table 5: List of programs used for testing simulators.

The hook function loads a single line from the trace file and ex-
tracts the destination register number and value, if these exist
for the current instruction. The program counter is also ex-
tracted from the line. The values of the destination register and
the program counter are loaded from the MCGREP simulator,
and compared against those from the trace.

Various test programs were executed on the simulators for ver-
ification purposes (Table 5). These are benchmarks from the
MIBench [7] and Mediabench [13] suites. It is not difficult to
find a set of programs that will exercise all parts of the MC-
GREP interpreter program to give full coverage.

6.2 Testing general microprograms

When the initial simulator was written, no reference implemen-
tation was available for testing microprogram execution. MC-
GREP is a new architecture, and it is not compatible with any
other type of CGRA. This means that the techniques applied for
testing SimpleScalar (described in section 2.4) are not appli-
cable as correct reference behaviour cannot be independently
defined.

However, each microprogram does have a well-defined func-
tion: it has to do the same job as a particular fragment of ma-
chine code (a hotspot). For any particular input condition (reg-
ister values and memory state), the microprogram must pro-
duce the same output condition that would result from running
the code (Figure 13).

This is tested by executing two copies of the simulator at the
same time. One copy runs a program that has been modified to
call microprogrammed versions of its hotspots. The other uses
the original machine code. Test programs from Table 5 were
used.

Simulator
MCGREP

Simulator
MCGREP

Compiler

Correct?

Hotspot program
(machine code)

Compare state

Simulator state

Figure 13: Comparing hotspot microprogram operation with
its equivalent machine code in order to validate MCGREP op-
eration. Both simulators are expected to terminate execution in
the same state, showing that the microcode implementation of
the input hotspot is functionally identical to the machine code
implementation.

Branch into microcode encountered
by microcode simulation. Interpreted
simulation executes up to the branch
point. Microcode simulation suspended.

�������
�������
�������

�������
�������
�������

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

simulationsimulation
Microcode Interpreted

T
im

e

Events

Test begins. Microcode simulation
executes first. The boot up program
(machine code) is interpreted.

Microcode executed until return.

Machine code is executed by the
interpreted simulation.

Comparison point. The states of the
two simulators are compared.

Branch into microcode encountered
again. Test process is repeated.

Figure 14: Application of the test illustrated in Figure 13 to an
entire program, using two copies of the simulator.

The two simulators are executed according to the pattern shown
in Figure 14. This pattern permits state comparison between
the memory and registers whenever a microprogram termi-
nates. This comparison assumes that the implementation of
the machine code interpreter is correct - but this can be tested
separately as described in section 6.1.

The weakness of this technique is that it cannot distinguishbe-
tween errors in the MCGREP microcode implementation and
errors that have been introduced by the compilation process.
However, it will always detect errors, which can be resolvedby
manual debugging.

The new simulator can be tested using this process. However,
it can also be compared with the initial simulator, which can
act as a reference implementation. This test repeats the process
used for testing the interpreter against OpenRISC (section6.1),

Simulator
MCGREP

Simulator
OpenRISC

Simulator
Initial

behaviour
µExpected c

T
est program

s

Test programs

T
est hotspots

Figure 15: Verification links used for the new MCGREP simu-
lator.

but comparisons are made on every clock cycle instead of every
dispatch table access, because execution is now being tested at
the microcode level.

6.3 Results

The tests, summarised in Figure 15, successfully validatedthe
MCGREP simulator. Although there is no reference hardware
implementation yet, it was possible to test the features of the
simulators against other references.

7 Evaluation

Table 2 lists three requirements for the new simulator. Of these,
accuracy and flexibility are the most important. Accuracy has
already been verified in section 6, as far as is possible without a
reference hardware implementation, but what of flexibilityand
performance?

7.1 Performance Evaluation

The simulator is slowed down by two types of event:

• Calls to hook functions (see section 5.2),

• Execution reaching dirty microcode (see section 5.4).

These events cause execution to exit the simulator core, return-
ing to the host Python environment. Arbitrary Python code
may be executed by each hook function. In the case of dirty
microcode being reached, a call to the C compiler will also be
necessary.

Table 6 gives some data about these speed penalties when the
simulator is executing on three reference computers. Perfor-
mance data for the previous simulator is also listed here.

The hook functions used for Table 6 are empty - they are im-
plemented in Python, but return immediately. This allows the
overhead of hook calls to be isolated from the actual operation
of a real hook function.

The microcode updates for Table 6 are also minimal. Each
is a single write to an extended register, requiring only a few
alterations to the microcode store. More complex changes are
likely to reduce the speed of compilation further, as there will
be more lines of microcode to compile.

Description Ref 1 Ref 2 Ref 3
No hooks or updates 5,010,000 2,540,000 6,920,000
One microcode update during execution 4,600,000 2,250,000 6,300,000
Two microcode updates during execution 4,210,000 2,040,000 5,780,000
Three microcode updates during execution3,840,000 1,850,000 5,440,000
One hook call per dispatch 1,100,000 493,000 1,310,000
One hook call per tick 549,000 253,000 647,000
Initial simulator, no hooks or updates 1240 956 2150

Table 6: The effects on simulator performance, measured in simulated clock cycles per host CPU second, running thesha

benchmark on three reference computers, as dummy hook functions and small microcode updates are introduced. The three
computers are (1) Pentium 4 workstation, Linux, 2.8GHz, (2)UltraSPARC-IIIi server, Solaris, 1GHz, and (3) AMD Athlon 64
server, Linux, 2.2GHz.

Ref 1 Ref 2 Ref 3
Regenerate 0.0667 0.0900 0.0367
Recompile 2.72 6.01 1.54

Table 7: CPU time in seconds required to regenerate and re-
compile the boot-up microcode configuration of MCGREP on
three reference platforms (see Table 6 for details of these).

As these results show, the simulator is normally very fast (> 5
million clock cycles per second on two reference computers).
A significant penalty is introduced by any call to hooks or a mi-
crocode update. Individual microcode updates are much slower
than individual calls to hooks (Table 7), but the sheer frequency
of calls to hook functions can overshadow them. Calling a hook
function every tick results in an almost ten-fold speed reduc-
tion.

Despite this, the common case - uninterrupted execution - is
fast. The penalty is regarded as acceptable: especially as
the new simulator is approximately three orders of magnitude
faster than the initial simulator.

7.2 Flexibility Evaluation

Simulator flexibility falls in to two categories. One is the ability
to construct new types of test from the basic simulator. Another
is the ability to adjust the simulator configuration: extending
the MCGREP array, for example.

Section 6 gives several examples of tests that were performed
by extending the simulator. The interpreter test that compared
an OpenRISC simulator trace with MCGREP operations used
a hook function on the dispatcher. The tests involving machine
code and microcode comparisons (illustrated in Figures 13 and
14) also made use of hooks, to carry out the comparisons, set
breakpoints, and even to reverse changes made to the machine
code to force the two simulators to use different implementa-
tions of each hotspot.

That all of these tests were possible without invasive modifica-
tion of the simulator code is a good indication of the flexibility
granted by hook functions. Hook functions even allow some in-
struction set extensions: the original OpenRISC simulatorde-

fines some “extended nop” instructions for host operations like
“exit” and “debugging on”. These can be supported through
a hook function for handling nop instructions - this appearsin
the main loop, Figure 10.

The simulator configuration is also extensible, but invasive
modifications to the code generator are required for some
changes. The low level MCGREP configuration specifies the
operations available at each node: these are provided by a
functional unit generator, written in Python, which produces
C code. That generator can be extended by the creation of a
replacement Python function.

The high level MCGREP configuration specifies the arrange-
ment of the array and interconnection elements. This can be
changed by modifying or extending the high level processor
description. Any configuration that is recognised by the code
generator can be used. There are currently some practical re-
strictions regarding the types of connection that are possible,
but improvements to the code generator will resolve these.

Because it is possible to change every level of the simulator
configuration through extensions to software, and because it is
possible to affect simulator execution through hooks, the simu-
lator is regarded as sufficiently flexible for future experiments.

8 Conclusion

The correctness of the simulator has been shown using a variety
of tests, including comparisons to other simulators. The hybrid
C and Python implementation strategy has allowed flexibility
and detail to be retained while performance was significantly
improved for the common case. The code generation approach
used is also platform independent and relatively straightfor-
ward to implement, as a C compiler is used for production of
machine code.

This development of a new simulator has also allowed new
types of experiment to be carried out using MCGREP. For the
first time, the MCGREP simulator is sufficiently fast to be able
to execute the MCGREP JIT compiler itself. MCGREP pro-
grams have been able to use this to optimise themselves, gen-
erating new microcode to accelerate hotspots online. Thus,the
goal of this work, enabling further experiments, has already

been reached.

One option for future work is implementation in a hardware
modelling language. The accuracy of the simulator could be
improved further by a move to an implementation in SystemC,
which would permit the interconnections between components
to be modelled. However, this would be a return to a fully
interpreted simulation, as the type of optimisations created by
recompiling the simulator when the microcode changes would
not be appropriate in a hardware-level simulation. This is be-
cause they involve specialising each device in the data pathto
the function specified by microcode. A SystemC simulation
would give more accurate information about the hardware, at
the cost of performance.

References

[1] Anonymous. ARMulator. Application Note 32, ARM
DAI 0032F, ARM Limited, 2003.

[2] Apple Inc. Virtual PC for Mac OS X.
http://www.apple.com/macosx/applications/virtualpc/

(accessed 17th Dec 2006).

[3] V. Betz and J. Rose. VPR: A new packing, placement
and routing tool for FPGA research. InProc. FPL, pages
213–222. Springer-Verlag, 1997.

[4] D. Burger and T. M. Austin. The simplescalar tool set,
version 2.0.SIGARCH Comput. Archit. News, 25(3):13–
25, 1997.

[5] DOSBox Crew. DOSBox, x86 emulator with DOS.
http://dosbox.sf.net/ (accessed 17th Dec 2006).

[6] R. E. Gonzalez. Xtensa — A configurable and extensible
processor.IEEE Micro, 20(2):60–70, 2000.

[7] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free, commer-
cially representative embedded benchmark suite. InProc.
IISWC, 2001.

[8] R. Hartenstein. Coarse grain reconfigurable architectures.
Embedded Tutorial, ASP-DAC 2001.

[9] J. R. Hauser and J. Wawrzynek. Garp: a MIPS proces-
sor with a reconfigurable coprocessor. InProc. FCCM,
page 12. IEEE Computer Society, 1997.

[10] G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis. The
Molen Media Processor: Design and Evaluation. InProc.
WASP, pages 26–33, September 2005.

[11] D. Lampret. OpenRISC 1200 (accessed 16 Jan 06).
http://www.opencores.org/.

[12] K. P. Lawton. Bochs: A Portable PC Emulator for
Unix/X. Linux Journal, 1996(29es):7, 1996.

[13] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Medi-
abench: A tool for evaluating and synthesizing multime-
dia and communications systems. InInt. Symp. Microar-
chitecture, pages 330–335, 1997.

[14] R. Lysecky, G. Stitt, and F. Vahid. Warp processors.ACM
TODAES, 11(3):659–681, 2006.

[15] R. Lysecky, F. Vahid, and S. Tan. A Study of the Scala-
bility of On-Chip Routing for Just-in-Time FPGA Com-
pilation. InProc. FCCM, 2005.

[16] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and
R. Lauwereins. Exploiting loop-level parallelism on
coarse-grained reconfigurable architectures using modulo
scheduling. InProc. DATE, page 10296. IEEE Computer
Society, 2003.

[17] M. C. Merten, A. R. Trick, and R. D. Barnes. An archi-
tectural framework for runtime optimization.IEEE Trans.
Comput., 50(6):567–589, 2001.

[18] G. D. Micheli, W. Wolf, and R. Ernst.Readings in Hard-
ware/Software Co-Design. Morgan Kaufmann Publishers
Inc., 2001.

[19] D. A. Patterson and J. L. Hennessy.Computer organi-
zation & design: the hardware/software interface. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA,
1993.

[20] Python Software Foundation. Python Official Website.
http://python.org/ (accessed 29th Nov 2006).

[21] A. Rigo. Representation-based just-in-time specializa-
tion and the psyco prototype for python. InProc. PEPM,
pages 15–26. ACM Press, 2004.

[22] H. Schmit, D. Whelihan, M. Moe, B. Levine, and R. Tay-
lor. PipeRench: A virtualized programmable datapath. In
Proc. CICC, pages 63–66, 2002.

[23] SimpleScalar LLC. SimpleScalar Hacker’s guide.
http://www.simplescalar.com/docs/hack guide v2.pdf (ac-
cessed 17th Dec 2006).

[24] SimpleScalar LLC. SimpleScalar Tutorial.
http://www.simplescalar.com/docs/simple tutorial v4.pdf

(accessed 17th Dec 2006).

[25] Sun Microsystems. Java Hotspot Server VM: Dynamic
Compilation. http://java.sun.com/products/hotspot/-

docs/general/hs2.html (accessed 29th Nov 2006).

[26] D. Vassiliadis, N. Kavvadias, G. Theodoridis, and
S. Nikolaidis. A RISC architecture extended by an ef-
ficient tightly coupled reconfigurable unit. InProc. ARC,
2005.

[27] J. Whitham and N. Audsley. MCGREP - A Predictable
Architecture for Embedded Real-time Systems. InProc.
RTSS, pages 13–24, 2006.

