A SELF-OPTIMISING SIMULATOR FOR A
COARSE-GRAINED RECONFIGURABLE ARRAY

Jack Whitham and Neil Audsley
Real-Time Systems Group
Department of Computer Science
University of York, York, YO10 5DD, UK
j ack@s. york. ac. uk

Keywords: CGRA, Simulation allowing available hardware to be virtualised.

Abstract Research involving MCGREP architectures requires soéwar
tools to build CGRA configurations, and working models im-
This paper describes the implementation and testing offa higplemented in either hardware or software for experiments.
speed simulator for a reconfigurable processor architect@imple initial versions of all of these components have been
named MCGREP. The architecture is based on a coarse-graiweitten, but these initial versions are unsuitable for éasgale
array of small processors controlled by reconfigurable neéxperiments involving complex applications.
crocode. A high-speed simulator is needed to allow compl
experiments to be carried out on MCGREP, involving large a
plications and time-consuming computations.

& particular, the MCGREP simulator is not sufficiently fast
f execute a Just-in-Time (JIT) compiler. The JIT compiger i
used to move pure software functions onto CGRA configura-
Contributions include descriptions of methods for genegat tions, effectively optimising an application for the MCGRE
using and testing a simulator for a coarse-grained reconfigatform. Unfortunately, the initial version of the MCGREP
urable architecture (CGRA). Special issues that are hdnd&mulator cannot execute the JIT compiler in a reasonafie ti
include a requirement to convert MCGREP microcode into nxame, as millions of instructions are needed for each Ji-co
tive code at any time during execution, and a need to supppitation, and the initial simulator executes only a few thand

architectural extensions for future experiments. instructions per second. Thus, the JIT compiler has to be run
. in a test harness outside of MCGREP, and online “self” opti-
1 Introduction misation cannot be tested. This is just one example of a com-

MCGREP [27] is an array of simple processors, organisgtluex application that cannot effectively be executed inittie

: . : . ial simulator.
in the form of acoarse-grained reconfigurable architecture
(CGRA) [8, 26]. Both fine- and coarse-grained reconfigurabléis paper describes the implementation and testing of a new
architectures consist of arrays of processing nodes coemhesimulator for MCGREP architectures, which has far better pe
by a network of routing elements. formance but retains implementation detail and capadslifior
Coarse-grained architectures differ from fine-grainedthidéec- e_xtenS|on and_ testing. The general con_tnbuuqn IS a q:ascr}

. X : tion of some simple methods for generating, using, andgsti
tures in that each node is capable of operating upon more than) . . :

. : L ; . a high-speed CGRA simulator that is compiled to native code.

a few bits at a time. The reduction in granularity brings a AUM.

. . . h
ber of benefits, such as easier programmability [8] and ast |
cal reconfiguration [22]. In the MCGREP model, the CGRA
can act as a general-purpose processor that interpretsRA&SC Section 2 describes related work and sources used. Section 3
chine instructions. However, it can also be programmed witlescribes the MCGREP architecture, leading to the degmmipt
application-specific configurations that can be used to bd u®f the initial simulator in section 4. Requirements for theswn
to speed up computational bottleneck®tSpot3 in applica- simulator are described in section 5, followed by impleraent
tions. tion details. Section 6 describes the tests used to showaterr

— - . ness, and section 7 evaluates the approaches used against th
Application-specific function accelerators have long been X .)
lementation requirements. Section 8 concludes.

recognised as a good way to speed up overall performance [i%?o
These may be included as fixed hardware devices (ASICs),28s previous Work

processor extensions [6], or as run-time reprogrammable de

vices [10, 14]. Reconfigurable hardware platforms remawe li Application-specific devices are commonly used in both em-
itations on the number of accelerators that can be suppbytecbedded systems and home computers. Historically, embedded

e contribution to the MCGREP project is a fast system for
utomatic testing and future experimentation.

systems have used CPUs that are optimised for particular tas Performance

types, such as DSPs, and today some use CPUs that can be

adapted to applications, such as Xtensa processors [6].eHom .
computers also include some application-specific devigels s Pick twc
as graphics accelerators.

All of these devices are fixed. If the processors currentreii
application-specific tasks could be reconfigured, theydbel Detail Flexibility

reused by other applications. Hardware devices could be vir

tualised and instantiated from memory or disk when requirdéigure 1: The tradeoffs in simulator design. Performance is
In this way, an effectively unlimited set of configuratiorsutd speed of simulation. Detail minimises risk from differeace
be supported. between the microarchitecture and the simulator. Flaxbil

L . . allows experiments with related architectures.
The program for a hardware device is callecbafiguration If P

this can be changed at all, the devicedsonfigurable Some

devices may beun-time reconfigurableallowing them to be)
programmed with new functions during execution. simulations of both natural phenomena and man-made pro-

cesses to test the eventual results of particular decisBins

In section 2.1, reconfigurable hardware approaches are Sjfition allows experimentation with a new design while only
veyed in general. This is followed by an examination of simisarts of the design are complete.

lation technigues and existing simulators in sections@22 5.) _))
For example, aerospace engineers will experiment withlsmal

2.1 Reconfigurable Hardware scale models and computer-generated models of aircraftéef

, . . building a full-size prototype: this allows early designno
Reconfigurable hardware devices are usually built upon-an ff be evaluated before expensive construction work. Silyila

ray of configurable processing elements, linked by a COMMURY this application, simulation allows hardware designtpro

cation network. types to be tested without the expense of building any harelwa
The most well-known devices are FPGAs, which are intenddévices. Simulators also facilitate experiments and aatimm

to be as generic as possible, supporting many differentstygesting, because the simulated device can be manipulated by
of logic circuit. These are fine-grained reconfigurable arcleomputer programs.

tectures, b_e(_:aus_e most lOQ'C. elem_e nts are as primitveRs P pitectural simulatorsare programs that execute orhast
S'bl.e’ providing S|mple_comp|nator|al functions and singit stem and provide a model of a CPU. They are often classed
registers. FPGA configurations are generated_ b.y a comp eithefunctionalor performancesimulators [23]. Functional
resource-intensive process that includes heuristic kefarc simulators are concerned with replicating the functidigiaf
placement and routing of elements [3]. a CPU (thenstruction set architecturd SA) without concern
Some FPGAs are run-time reconfigurable, and this has béenprecisely replicating the methods used by the CPU rftie
used to create virtual hardware devices. The Molen [10fartoj croarchitecturg. This simulates what a programmer would ex-
exploits run-time reconfiguration, but the configurationsstn pect the CPU to do - all machine instructions produce the cor-
be generated priori using workstation tools. In contrast, the'ect results. Performance simulators also do this, butrysi
Warp [14] project includes online generation of configuyas lating the microarchitecture itself, which allows accertim-
using a JIT compiler that targets an FPGA. However, this pring information to be obtained and provides a more detailed
cess is still reported to be resource intensive, despitaghef Simulation.

simplified tools [15]. The tradeoffs in simulator design are illustrated in Figlire

Coarse grained reconfigurable arrays (CGRASs) are similarftom [23]. The three factors cannot be optimised simultane-
FPGAs but the processing elements implement high-levekfurpusly.

tions directly: often taking the form cdrithmetic-logic units
(ALUSs) [8, 26]. This simplifies configuration building, whic
may avoid heuristic search entirely by use of greedy alggxisting simulators target many common types of CPU, often
rithms (PipeRench [22]) while others may use tree matchipgso simulating memory and some types of input/output devic
algorithms (Garp [9]) or scheduling algorithms (Mei [16]). The SimpleScalar [4] simulator suite, intended for indiastr
also simplifies run-time reconfiguration, which may be even Rind research use, contains programs to simulate ARM proces-
done on every clock cycle, as in the PipeRench architectuggrs and a MIPS-like CPU (PISA). These programs simulate
and in the experimental MCGREP architecture [27]. processors at different levels of abstraction [4, 23], aswsh

in Table 1. More detailed simulators produce more accugate r
sults, but are slower, allowing the user to choose an apjatepr
Simulation is the process of modelling the behaviour of oreadeoff from Figure 1.

system using another. Computers are often used to carry Sithulators are extensively used for embedded development

2.3 Existing Simulators

2.2 Architectural Simulation

Name Speed| Detail [Description Random instruction

simfast Most | Least | Functional, no and state
checks.

simsafe Functional, with /
checks.

si m uop Functional, simulates simmatorl ~ Reference |
part of microarchi- implementation
tecture.

simoutorder | Least| Most | Performance, simut
lates entire microar; L=_]
chitecture.

Table 1: The different types of simulator in the SimpleScala Correct?

toolset. These simulators are sorted in order of timing esmu
Figure 2: Verification of a simulator by random testing again
areference implementation, as used in the developmentof Si
pleScalar.

work. The OpenRISC development kit [11] includes a func-

tional simulator for the OpenRISC processor, which also sim

ulates some peripherals. The ARMulator is an official perfoformance dynamic translatior(JIT compilation) can be used
mance simulator from ARM Limited [1]. Bochs [12] is a funco replace simulated code with native code.

tional x86 simulator for development work. This technique is most famously used by the Java virtual ma-

Simulators are also used for office tasks and entertainmeditine [25], as a part of simulating a Java CPU. It is also used
PowerPC versions of Virtual PC simulate an x86 procesddy the Bochs x86 simulator and Virtual PC. These simulators
with PC peripherals [2]. The Dosbox [5] simulator provides ahormally operate by interpretation, but can run JIT compila
DOS-era PC environment for retro gaming. These simulatdi@n on computational bottlenecks to make the most commonly
are functional as high performance is essential for interac used code run faster.

use. 3 MCGREP Microcoded CGRA

MCGREP is a CGRA with three levels of configuration. The
Architectural simulation carries a risk of introducing @rr high-level configuratiorspecifies the layout of CGRA nodes
through differences between the simulator implementatimh and their interconnections. Thmeid-level configuratiorcon-
the device being simulated. trols the run-time operation of each node. Tow-level con-

Some errors are easily detectable at the functional leseh figuration specifies the operations available at each node. All
y Y three of these can be changed at build time, when the pracesso

produce incorrect results as instructions execute. Othple . : : .
) ; : .. Is created. However, the mid-level configuration can also be
mentation errors may be hidden by the architecture, manifes

ing themselves as timing errors. An erroneous implemmmireprogrammed during run-time.
of a cache would fall into this category - the simulated devicThe MCGREP architecture is intended to be used to execute the
would produce correct results, but with incorrect timing besame tasks that are currently given to processors withiredmb
haviour. ded systems. Experiments are needed to evaluate how closely
tl?_e architecture’s capabilities match up to this goal. Mahy

ese experiments can be carried out very effectively oma-si
lator, with the added advantage that every level of configuma
can be adjusted easily.

2.4 Simulator Validation

Both types of error can be detected by comparison with a r
erence implementation. SimpleScalar was verified against
mulator [24] and real hardware. The verification involved-ra
dom testing, by feeding random instructions and statespag in
to the simulator and the reference implementation (Figlre 3.1 Details

Performance testing of elements that can’t be modified exter

nally, such as caches, can be performed in a similar way - figure 3 illustrates an array of nine MCGREP nodes, with an

it may be necessary to use a sequence of instructions (sucHgconnection described by the high-level configuratfig-
a benchmark program) rather than a single one. ure 4 illustrates a single MCGREP node, with a function set

determined by the low-level configuration.

2.5 High Performance Simulation)
Each MCGREP node contains a processor. Each has a local

Simulation involvestranslating simulated code or microin- register file and a time-multiplexed configuration storeysexd

structions into the native code of the host. Usually thisaeal in the PipeRench [22] processor. This configuration store ac
by interpretation a program examines the simulated code andally contains a program, specified by the mid-level config-
takes appropriate action for each instruction. For highesr puration. This program can be changed at run-time, providing

—_— 7084: 8c e4 00 00

R R |
7088: 9c a5 ff ff I.addi r5,r5 Oxffffffff
EE=— T = == 708c: d8 06 38 00 |.sb 0xO(r6),r7
g, g g} 7090: 9c 84 00 01 |.addi r4,r4,0x1
1
1
1

7094: bc 25 ff ff .sfnei r5 Oxffffffff
7098: 13 ff ff fb
709c: 9c c6 00 01

.bf 7084 <_mencpy+0xlc>
.addi r6,r6,0x1
‘Eﬁf % =0 Figure 5: A sequence of conventional opcodes (framcpy,
which is a hotspot in ther c32 benchmark program).

.I'bz r7,0x0(r4)

Figure 3: A member of the MCGREP architecture class, wi

nine nodes. MCGREP nodes have the ability to run a machine code via an
interpreter microprogram. This enables them to execute cod
that is not specific to MCGREP.

L L L ‘ One MCGREP node is active at boot up. This node is referred
to as thelocal node for the purposes of this discussion: all
others are considered to bemote The local node begins ex-
ecuting machine code from memory in the manner of any con-
ventional processor. There is a three stage pipeline, aed-an
tire RISC instruction set can be supported. This is suffidien
run any operating system or application compiled for the cor
rect instruction set architecture. However, executioredgs

bounded by memory latency and no parallelism is possible.

%2 Operation

)

CGRA INTERCONNECT

)

7

_ MCGREP currently interprets OpenRISC machine code. Be-
Figure 4: An MCGREP node. cause this interpretation is hardware-assisted, it ers@ttap-
proximately the same speed as an OpenRISC without an in-
struction cache [27].
run-time reconfiguration. It is microprogrambecause it spec-
ifies processor operations directly with no layer of absinac
Instructions within the microprogram consistrafcrocode

The OpenRISC architecture has reserved some areas of the op-
code space for extended instructions. In MCGREP, one oéthes
areas is defined for “jumps into microcode”, with the low-erd
Microprograms have been used to control the internal opelsts of the opcode used to select the microcode addresseThes
tions of processors for many years [19] - however, they canrapcodes act as a sort of system call, allowing machine code to
normally be redefined. Microprograms direct processorapetrigger a microcode function.

tions at a very low level, usually with a direct mapping bedwe

microcode bits and control lines. To obtain maximum throughput, programs can upload new mi-

croprograms into the microprogram store of one or more nodes
In MCGREP, each microprogram is a sequence of hardwaned then trigger their execution. This permits application
configurations that carry out some task. New microprograrsgecific operations to be encoded as single instructionsh Su
can be uploaded into any node at any time, allowing the platicroprograms can span multiple nodes, in order to take ad-
form to adapt to new applications. Complete reconfiguraifon vantage of instruction-level parallelism.

each node takes place every machine cycle, from the miceoc

, . q’%is is particularly useful when a hotspot, or computationa
configuration.

bottleneck, is reached. This is an area of application chae t
The physical array in Figure 3 may be dynamically split ints commonly used [17]. The efficiency of hotspot execution
virtual arrayswhich cooperate to run a particular task. Virtuahas a greater effect on an application’s execution time than
array configurations may be produced by any of the CGRficiency of any other code. Figure 5 shows a sample hotspot
configuration generation techniques described in [8], bat tfrom nencpy.

current approach is the use of a modulo scheduler as propose oo .
by Mei [16]. However, the details of this process are outsic!Sn &CGREP’ hotspot optimisation requires a process to gener

. ate microcode from original RISC machine code. Translating
the scope of this paper.)
a program from one language to a lower level language is nor-
Virtual arrays may be any size, so they can fit anywhere withinally called compilation: so enicrocode compileis needed.
the physical array. Physical adjacency is required for ecopThe microcode compiler must produce a series of operations
ating nodes to permit inter-node communication, but thig onthat accomplish the same task as the hotspot in less time. Fig
requires a virtual array to be composed of contiguous blocksire 6 shows such a sequence.

Node 0 Node 1 Branch? '
8 73 r -1 — . . . [
2o L LAdd‘—‘ No Test driver Configuratior] %)
{g d—rl7 jS I Microcode model s
& n -1 r4
é = ENm Equali{ L*Add‘:i No
S FLAG 4
? T 7 6
~ Lsmre—‘ L. Add«:i’ If Flag,
v6 | branch te”
@) [
Return to machine code Return to machine cod Simulator I nterpreter
. . . 1
Figure 6: Mapping of Figure 5 onto a sequence of MCGREP !l
configurations. |

Figure 7: Architecture of initial simulator. Arrows indiea
3.3 Compilation communication between components.

The details of compilation are outside the scope of this pape S)
Here, we regard the compiler as a black box which takes mi#ator. This simplifies interfaces between tools and makes |

chine code as input and emits appropriate microcode for-a \@@SY for one tool to reuse components from another.

tual array of one or more MCGREP nodes. This microcode ce core of the simulator is the interpreter (labelled “Ihis
then be uploaded to each MCGREP node via writes to a spegalalled once for every clock tick and every MCGREP node. It
area of memory. fetches appropriate microcode from the configuration (laete

Early versions of MCGREP used a partially manual proces%). and then interprets and executes that code. The perfor
for this compilation, in which operations were scheduletbonMance corner of the tradeoff diagram is lost, because eath pa
a virtual array by the user before microcode was generat€fithe code must be mapped through one or more intermediate
More recently, a JIT compiler has been developed to han&@des: this happens very quickly in hardware, where layers o

this task automatically, using modulo scheduling techegs aPstraction are optimised away, but requires many opestio
proposed by Mei [16]. in software. An example is illustrated in Figure 8.

Microprograms have many advantages over machine code ptBiS problemis exacerbated by the use of the Python language
grams in MCGREP. They may access a much larger registfffortunately, Python does not execute directly on the host
space - currently 512 registers per functional unit, whiah ¢ Processor, but via an interpreter of its own (much like Java)
be preloaded with constant values that are used by code. THégrPreted code is always slower than natively executeleco
can communicate with other nodes to fetch remote register veOnventionally, this problem is avoided by JIT compilatién
ues. They can execute twice as quickly on each unit if regist T compiler for Python does exist [21], but the performance
accesses are optimised. Microbranches are zero-cost caheyincrease from using it in this case is only a 2-3 times improve

also cause microprograms to begin executing on remote nod&Nt.

by sending a branch instruction to them. However, a flexibility advantage comes from the use of Python
4 Initial Simulator Each simulator component is a Python object that can be ex-
itial simulato tended by subclassing. Thus, a basic simulator class tygd co

MCGREP simulators cannot operate at the purely functioré extended with a more advanced simulator involving addi-
level, as some of the simulators described in section 2.& @o. tional features. This was done to create simulators capable
necessary to execute microprograms in order to simulate M@f-executing advanced tests and for semi-invasive debgggin
GREP, because these can be changed. To do this, it is also st&h powerful capabilities would need to be retained in some
essary to specify the operation of the individual hardwarac Way in more advanced simulators. As in Figure 1, a tradeoff
ponents inside MCGREP, because each bit of the microcdifintis reached between performance and flexibility.

has a meaning only at the lowest level of operation. Thus, the
simulator has to be a performance simulator with an accurate

model of all parts of MCGREP. In the tradeoff diagram (Figurperformance problems in the initial simulator are iderdiis
1), detail must be selected. coming from:-

Implementation

Initial implementations of the MCGREP simulator concen-

trated on correctness, flexibility and clarity of code befper- 1. Online interpretation of microcodéd. microcode is in-
formance. A simple simulator architecture was used, asshow terpreted as it is executed),

in Figure 7, and the entire implementation was written in the

Python language [20]. Python is used to describe the configd- Online interpretation of the simulator itself.

uration of an MCGREP processor, as it is a highly extensible

language that is ideal for this purpose. So it was naturdktm aResolving these issues is one requirement for the new simula
use it to build all tools relating to MCGREP, including thensi tor. However, a more important requirement is the reteraion

microcode []
..1100100110001001... . . . =
Test driver Configuratior microcodd
\L —] Microcode model oo
mlchcode Get_Value <— "fu_cmd'
object - Python component:
1100 - binary data n'
Simulator Code Generatt —ﬂ C program
fu_cmd Decode Controler_|1
codec i
C components
ARITH_ADD - internal symbol ‘
Hocksé‘ @ E
fgnc_unlt Interpret Interface Core C Compiler I
simulator C/Python IayerI Simulator core functions
+ (addition) — Python operator 5
ﬁ Native code component
& memor

inputs%E Execute + |——=> output

Figure 9: Architecture of fast simulator.

Figure 8: Steps taken to decode an ALU command from the

internal representation of microcode to an actual machme o

eration (addition). To retain this flexibility, the code generator and the progra

it produces are both used by a simulation harness (Figure 9,
labels “3" and “4”). The simulation harness arranges for the
code generator to be reactivated when microcode is updated.
The simulated MCGREP can update its own microcode and
execute it.

1 | Detall The accuracy of the simulator,
2 | Flexibility The extensibility of the simulator,
3 | Performanceg The speed of the simulator.

Table 2: Requirements for the new simulator, in priorityed

i : . e The code generator is an extensible Python object, so adapta
The first requirement has the highest priority.

tions to the architecture can be made by subclassing it and th
other code generators it uses. It remains as flexible asitied in
simulator.

both flexibility and detail. As Figure 1 and its associated r& he code generator could produce machine code directlyg, as i
search [23] state, it is not possible to maximise flexihilitg- commonly done by JIT compilers [21]. But this would make
tail and performance, so performance can only be improvedthe simulator highly specific to a single host architecta®,
long as detail and flexibility are unaffected. Table 2 listsde well as making development and debugging significantly more
requirements. difficult. Thus, the low-level tasks of code generation &fe |

The new simulator architecture is shown in Figure 9. In thtg a C compiler.

new architecture, some components are native code - thatsi®, Core
they are implemented in the native machine code of the host

platform. The following sections discuss some of the compdhe simulator core (labelled “2” in Figure 9) presents a nemb
nents of Figure 9. of external interfaces, for communication with the the damnu

tion harness (“3” and “4").

5.1 Code Generator)))]]]
Oneis a Run function. This continuously executes a sinanati

The interpreter from Figure 7 is replaced with a code geperatintil (1) a microcode update is required, (2) the programmter
(Figure 9, label “1"). This produces C code from microcodeates, or (3) an error occurs. Until one of these three events
descriptions. The code generator is an interpreter, buttiés- occurs, execution takes place entirely within the Run fiamct
pretations areffline they are fixed code paths as soon as C @ its callees. There are no calls to Python functions unless
generated. The example from Figure 8 is collapsed to a sing@okshave been installed.

line of C code to perform an addition. The resulting C progra

(Figure 9, label “2") is used for simulation p?ooks act as logic probes for testing. Now that the simulator

core is C, rather than Python, it cannot be arbitrarily estézh

This approach avoids both performance problems identifiedfeatures can be added by extending the code generatorisut th
the introduction. There is no online interpretation. Siataf would not be suitable for extensions that interacted witteot
code is written in the native machine code of the host systeprogram components during execution, as these would need to
However, flexibility could be lost as any update to microcod®oss the C/Python language barrier. So hooks are provided t
must also require an update to the C program. formalise the extension process. They are functions theat ar

Name Description EA =0003f fcc PA =0003ffcc r7 00000030 000064d8 I.sb 0xO(r6),r7

- . _ r4 =0000aelc r4 =0000aelc 000064dc | . addi r4,r4,0x1
regi ster file | General-purpose register values. 5 00000001 o ,00064e0 1. sfnei 15,1
i word Instruction word register. 7 00000031 EA -0000se1e PA <0000ae1c 00006440 I b2 17, OXO(r4)
menory.i mage | Simulated RAM. , EA Z0003(1c4 PA 00031 d r7 00000031 00006443 | ob OXO(1) 17
upc Microprogram counter register |- ¢ -0000sto ré -omooses soooui |- a8 14,00
one per node' SR =00008201 000064e4 |.bf -5
I su Contains state of load-store unit.

ucode_updat es | List. Stores all writes to microcodg

. for later use by the code generator. Figyre 11: Sample of OpenRISC simulator output (the kernel
dirtytable Marks dirty microcode (see sectiqn o the mencpy function). The trace allows register writes and
5.4). program counter updates to be checked.

=

Table 4: Principal Context object fields.
This is the job of the Interface (Figure 9, label “3"), which

import Simulatorinterface as Si translates C calls into a form that can be used directly from
try: . .
" S1 At tach(L BRARY NakE) Python. It also provides a wrapper to allow hook functions to
context = SI. Make_Cont ext (MENCRY_| MAGE_NAVE) be written in Python.
&St Fok(cont ext) NGB toak. 51 Hoox_soy e o This glue layer is written in C, but conforms to the Pythonespe
runni ng = True ifications for modules written in native code. The Python API
while (running): . . .
rc = SI. Run_Dynami c(cont ext) is used to translate function calls and variable accesde®bn

running = not (rcin (SI.RC_EXIT, SI.RCERROR))
Python and low-level C types.
if (running):
Must have hit dirty microcode - update our notion

of the microcode store to mtch simlator. The most essential feature of this glue layer is its abititiod

Do_M crocode_Updat e(Sl . Get _M crocode_Updat es(cont ext)) . ..
and unload the simulator core program from memory. This is

Rebuild library with new nicrocode, preserving n . . N

the context (which contains all state data). done using thell open anddl cl ose functions, which permit

S| . Det ach N n . " .

Rebui 1 00 # C program produced shared objects (dynamically linked libraries) to be attatto

Rebui | d_Li brary() # Shared object produced . .

SI.. At t ach(LI BRARY_NANE) the memory space of a program at runtime. This allows the

Now resume execution with new nicrocode.
simulator core to be rebuilt during simulation. These opera

Sinulation ends . . .
finally: tions do not affect context objects, which can be passed be-

Sl . Detach()

tween versions of the simulator core provided that they have
been produced for the same revision of MCGREP.
Figure 10: Main loop for simulation. The simulator integac>-4 Simulator

(S1) is the component labelled “3” in Figure 9. At the top level of simulation, Python code is responsible fo

recompiling and executing the core. This is done by the con-

troller (Figure 9, label “4”). The controller consists of aim

called by the simulator core in response to a particular ®vefon shown in Figure 10, which executes the simulationlunti
These can be used for testing and debugging. an error occurs or the program terminates.

Table 3 lists the hooks available in the current version &ed tThe main loop handles the situation in whiditty microcode

events that cause them. All of these are optional and areideag, < peen reached: dirty meaning that the representatidreof t

vated by default. The core provides an interface to allowkhog,icrocode in the C program is out of date. In this event, regen
functions to be registered. eration and recompilation of the C program is required. &hes

An important part of the interface is the context object¢lgnl are handled by th&ebui | d_C andRebui | d_Li brary func-
“5"). The context object holds all information about thetsta tions respectively.

of an MCGREP processor (as partially listed in Table 4). Th'és e -
object exists independently of the simulator core, so that t Correctness Verification

core can be updated by the code generator without destroyifig, simulator must operate correctly - that is, it must ofgera
the processor state. in the same way that a hardware implementation would. This

53 Interface section describes the steps taken to ensure this.

. Two distinct types of operation are possible on MCGREP - ex-
The simulator core is written in C and compiled to r“a(:hmeecution of microcode, and execution of machine code via mi-
code, but the rest of the MCGREP tools are written in Python '

and compiled to Python byte codes. This division is illut crocode. Although_ both involve e_xecutlon of ml_crocodesthe_
T A modes are very different. The first type of microprogram is
by the dividing lines in Figure 9.

a series of application-specific configurations used tolacce
A glue layer is needed to provide a Python interface to the.coate a task. The second type is an interpreter that fetcheswal

Name Description

HOOK_DI SPATCH.PRE | Called whenever the dispatch table (for interpreting maelkibde) is accessed.

HOOK_TI CK Called once per simulated clock cycle.

HOOK_DESTROY Called when a context object is being garbage collected liydpy

HOOK_ENTER_.UC Called in the event of a “jump to microcode” (see section.3.2)

HOOK_NOP Called when an extended nop (no operation) instructionés@ed. These are com-
mands to the simulatoe(g. exit). nr

Table 3: Types of hook provided by the simulator.

Test program Name Description
aes Encryption benchmark.
OpenRISQ crc32 Computes CRC-32.
Simulator i peg Decodes a JPEG image.
sha Computes SHA-1 hash.
MCGREP gsort Sorts a data set.
Simulator mad Decodes MP3 audio.
di j kstra | Shortest-path algorithm.
g721 Audio encoder.

Compare Registe]s

Table 5: List of programs used for testing simulators.

Correct?
The hook function loads a single line from the trace file and ex
Figure 12: Comparing MCGREP operation to reference Opéracts the destination register number and value, if thes e
RISC simulator trace. for the current instruction. The program counter is also ex-
tracted from the line. The values of the destination regeatel
the program counter are loaded from the MCGREP simulator,
from memory and executes commands based upon them. Thaesttcompared against those from the trace.

are discussed separately. . .
P y Various test programs were executed on the simulators fer ve

6.1 Testing the Interpreter ification purposes (Table 5). These are benchmarks from the
MiIBench [7] and Mediabench [13] suites. It is not difficult to

The SimpleScalar simulator was tested by comparison witfiad a set of programs that will exercise all parts of the MC-

reference implementation (section 2.4). In one case, the rgREP interpreter program to give full coverage.

erence implementation was a real processor, in anotheast w

another simulator. Similar tests can be performed on the M&2 Testing general microprograms

GREP simulator. When the initial simulator was written, no reference impéem

The interpreter must behave functionally in the same wayastation was available for testing microprogram executiorc-M
OpenRISC processor [11], so a comparison can be made WBRREP is a new architecture, and it is not compatible with any
the OpenRISC simulator. Exact performance simulation ts nmther type of CGRA. This means that the techniques applied fo
required here, but functional correctness is essentiathina testing SimpleScalar (described in section 2.4) are noli-app
code must execute without error. cable as correct reference behaviour cannot be indepdpdent

The OpenRISC simulator can emit a trace file listing all opeg-efmed'

ations executed during the run-time of a test program. Thd3ewever, each microprogram does have a well-defined func-
appear in the form illustrated in Figure 11. Operation of th#n: it has to do the same job as a particular fragment of ma-
MCGREP simulator can be verified against this, as illusttatehine code (a hotspot). For any particular input conditieig{

in Figure 12. ister values and memory state), the microprogram must pro-

The comparison is carried out as follows. The interpreter n’fhuecigzg (s:tir;uergultg)ut condition that would result from rugnin

croprogram accesses a dispatch table when it decodes a hew

instruction. This table gives the appropriate microcod#ress This is tested by executing two copies of the simulator at the
for handling the current instruction word. At that time, ffire- same time. One copy runs a program that has been modified to
gram counter and the values of registers can be read. A haall microprogrammed versions of its hotspots. The othesus
function (see section 5.2) is called by the simulator tofgotithe original machine code. Test programs from Table 5 were
the test driver that a dispatch table access has occurred. used.

Hotspot program Simulator stat
(machine code) MCGREP || 1. programs | OPENRIS
Simulator Simulator
Compilerl
v
MCGREP Expected Initial
Simulator behaviour Simulator

Figure 15: Verification links used for the new MCGREP simu-
lator.

sjodsioy 1591 I
sweiboid 159

Simulator

MCGREPl

Compare stat

Correct? but comparisons are made on every clock cycle instead of ever
dispatch table access, because execution is now being tste
Figure 13: Comparing hotspot microprogram operation withe microcode level.
its equivalent machine code in order to validate MCGREP og—
eration. Both simulators are expected to terminate exacii 6-3 Results

the same state, showing_that th(_a mic_rocode impleme_ntationrtp]e tests, summarised in Figure 15, successfully validéted
_the Input hot_spot is functionally identical to the machinde MCGREP simulator. Although there is no reference hardware
implementation. implementation yet, it was possible to test the featurehef t

simulators against other references.
Microcode Interpreted Events

simulatio/n simulation 7 Evaluation

Test begins. Microcode simulation

=
g executes first. The boot up progran X A i
(machine code) is interpreted. Table 2 lists three requirements for the new simulator. @$¢h
, _ accuracy and flexibility are the most important. Accuracg ha
Branch into microcode encounterec e k . . .
by microcode simulation. Interprete already been verified in section 6, as far as is possible witho
simulation executes up to the branc i i ik
point. Microcode simulation suspen reference hardware implementation, but what of flexibgit
Microcode executed until return. performance?
Machine code is executed by the .
interpreted simulation. 7.1 Performance Evaluation
Comparison point. The states of the . .
two simulators are compared. The simulator is slowed down by two types of event:

Branch into microcode encounterec
again. Test process is repeated. e Calls to hook functions (see section 5.2),

. L i . e Execution reaching dirty microcode (see section 5.4).
Figure 14: Application of the test illustrated in Figure b3an

entire program, using two copies of the simulator.) _)
These events cause execution to exit the simulator corenret

ing to the host Python environment. Arbitrary Python code
may be executed by each hook function. In the case of dirty

The two simulators are executed according to the p"jltte“m;homicrocode being reached, a call to the C compiler will also be

in Figure 14. This pattern permits state comparison between

. . necessary.
the memory and registers whenever a microprogram termi-
nates. This comparison assumes that the implementatioriTable 6 gives some data about these speed penalties when the
the machine code interpreter is correct - but this can bedessimulator is executing on three reference computers. Rerfo

separately as described in section 6.1. mance data for the previous simulator is also listed here.

The weakness of this technique is that it cannot distingbiésh The hook functions used for Table 6 are empty - they are im-
tween errors in the MCGREP microcode implementation aptemented in Python, but return immediately. This allows th
errors that have been introduced by the compilation processerhead of hook calls to be isolated from the actual opmrati
However, it will always detect errors, which can be resolbgd of a real hook function.

manual debugging. The microcode updates for Table 6 are also minimal. Each

The new simulator can be tested using this process. However single write to an extended register, requiring onlyva fe
it can also be compared with the initial simulator, which caalterations to the microcode store. More complex changes ar
act as a reference implementation. This test repeats ticegso likely to reduce the speed of compilation further, as theite w
used for testing the interpreter against OpenRISC (se6tibyy be more lines of microcode to compile.

Description

Ref 1

Ref 2

Ref 3

No hooks or updates

One microcode update during execution

5,010,000
4,600,000

2,540,000
2,250,000
2,040,000

6,920,000
6,300,000
5,780,000

Two microcode updates during execution 4,210,000
Three microcode updates during executio8,840,000| 1,850,000 5,440,000

One hook call per dispatch 1,100,000 493,000| 1,310,000
One hook call per tick 549,000 253,000] 647,000
Initial simulator, no hooks or updates 1240 956 2150

Table 6: The effects on simulator performance, measurednmnlated clock cycles per host CPU second, runningsha
benchmark on three reference computers, as dummy hookidneand small microcode updates are introduced. The three
computers are (1) Pentium 4 workstation, Linux, 2.8GHz UR)aSPARC-Illi server, Solaris, 1GHz, and (3) AMD Athlod 6
server, Linux, 2.2GHz.

Refl | Ref2 | Ref3 fines some “extended nop” instructions for host operatiikeas |
Regeneratg 0.0667| 0.0900| 0.0367 “exit” and “debugging on”. These can be supported through
Recompile| 2.72 6.01 1.54 a hook function for handling nop instructions - this appears

o) the main loop, Figure 10.
Table 7: CPU time in seconds required to regenerate and re-

compile the boot-up microcode configuration of MCGREP ohhe simulator configuration is also extensible, but invasiv

three reference platforms (see Table 6 for details of these) Modifications to the code generator are required for some
changes. The low level MCGREP configuration specifies the

operations available at each node: these are provided by a
functional unit generator, written in Python, which prodsc

As these results show, the simulator is normally very fasb(¢ code. That generator can be extended by the creation of a
million clock cycles per second on two reference Comp“-ter%placement Python function.

A significant penalty is introduced by any call to hooks or a mi . . _ -

crocode update. Individual microcode updates are mucteslowhe high level MCGREP configuration specifies the arrange-
than individual calls to hooks (Table 7), but the sheer feesgry Ment of the array and interconnection elements. This can be
of calls to hook functions can overshadow them. Calling &kho§hanged by modifying or extending the high level processor

function every tick results in an almost ten-fold speed cedudescription. Any configuration that is recognised by theecod
tion. generator can be used. There are currently some practical re

strictions regarding the types of connection that are pssi

Despite this, the common case - uninterrupted execution g improvements to the code generator will resolve these.
fast. The penalty is regarded as acceptable: especially as

the new simulator is approximately three orders of mageitu§ecause it is possible to change every level of the simulator
faster than the initial simulator. configuration through extensions to software, and because i

possible to affect simulator execution through hooks, timeis

7.2 Flexibility Evaluation lator is regarded as sufficiently flexible for future expegints.

Simulator flexibility falls in to two categories. Oneisthelly g Conclusion

to construct new types of test from the basic simulator. Aaot

is the ability to adjust the simulator configuration: extexgd The correctness of the simulator has been shown using dyarie

the MCGREP array, for example. of tests, including comparisons to other simulators. THaeridly

Section 6 gives several examples of tests that were pertbrmceand Python |mplementat|qn strategy has aIIoweq fI(_e>.<yb|I|t
. . ; and detail to be retained while performance was signifigant|

by extending the simulator. The interpreter test that C(mqbai roved for the common case. The code aeneration anproach

an OpenRISC simulator trace with MCGREP operations use P) g bp

:used is also platform independent and relatively stragghtf

a hook funcyon on the dlspat.cher. 'I_'he tests mvolymg mamh'ward to implement, as a C compiler is used for production of

code and microcode comparisons (illustrated in Figuresti3 a .
. matchlne code.

14) also made use of hooks, to carry out the comparisons, se

breakpoints, and even to reverse changes made to the machimie development of a new simulator has also allowed new

code to force the two simulators to use different implementtypes of experiment to be carried out using MCGREP. For the

tions of each hotspot. first time, the MCGREP simulator is sufficiently fast to beeabl

. to execute the MCGREP JIT compiler itself. MCGREP pro-

That all of these tests were possible without invasive meaifi grams have been able to use this to optimise themselves, gen-

tion of the simulator code is a good indication of the flexitil : . .

. : .erating new microcode to accelerate hotspots online. Tthas,
granted by hook functions. Hook functions even allow some D 5al of this work. enabling further experiments. has alyead
struction set extensions: the original OpenRISC simuld&r g ' g P '

been reached. [13] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Medi-

One option for future work is implementation in a hardware
modelling language. The accuracy of the simulator could be
improved further by a move to an implementation in SystemC,

abench: A tool for evaluating and synthesizing multime-
dia and communications systems.lin. Symp. Microar-
chitecture pages 330-335, 1997.

which would permit the interconnections between compaefit4] R. Lysecky, G. Stitt, and F. Vahid. Warp processé&{€M
to be modelled. However, this would be a return to a fully TODAES 11(3):659-681, 2006.
interpreted simulation, as the type of optimisations @édty

recompiling the simulator when the microcode changes woulftP
not be appropriate in a hardware-level simulation. Thisds b
cause they involve specialising each device in the datatpath

] R. Lysecky, F. Vahid, and S. Tan. A Study of the Scala-
bility of On-Chip Routing for Just-in-Time FPGA Com-
pilation. InProc. FCCM 2005.

the function specified by microcode. A SystemC simulati 6] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and
would give more accurate information about the hardware, at * R | auwereins. Exploiting loop-level parallelism on

the cost of performance. coarse-grained reconfigurable architectures using modulo

References

scheduling. IrProc. DATE page 10296. IEEE Computer
Society, 2003.

[1] Anonymous. ARMulator. Application Note 32, ARM [17] M. C. Merten, A. R. Trick, and R. D. Barnes. An archi-

DAI 0032F, ARM Limited, 2003. tectural framework for runtime optimizatiofteEE Trans.

Comput, 50(6):567—589, 2001.

[2] Apple Inc. Virtual PC for Mac OS X.
ht t p: // waw. appl e. conf macosx/ appl i cat i ons/ vi rt ual pc/ [18] G. D. Micheli, W. Wolf, and R. ErnstReadings in Hard-
(accessed 17th Dec 2006). ware/Software Co-DesigimMorgan Kaufmann Publishers

Inc., 2001.

[3] V. Betz and J. Rose. VPR: A new packing, placement

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

and routing tool for FPGA research. Bioc. FPL pages [19] D. A. Patterson and J. L. Hennessgomputer organi-
213-222. Springer-Verlag, 1997. zation & design: the hardware/software interfacilor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA,
D. Burger and T. M. Austin. The simplescalar tool set, ~ 1993.

\Z/Erslic;g;.O.SIGARCH Comput. Archit. New85(3):13~ [20] Python Software Foundation. Python Official Website.
! ’ http://python. org/ (accessed 29th Nov 2006).

DOSBox Crew. DOSBox, x86 emulator with DOS[21] A. Rigo. Representation-based just-in-time spezali
http: // dosbox. sf. net/ (accessed 17th Dec 2006). tion and the psyco prototype for python. Pmoc. PEPM

pages 15-26. ACM Press, 2004.
R. E. Gonzalez. Xtensa — A configurable and extensible .))
processorlEEE Micro, 20(2):60—70, 2000. [22] H. Schmit, D. Whelihan, M. Moe, B. Levine, and R. Tay-

lor. PipeRench: A virtualized programmable datapath. In
M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, Proc. CICG pages 63-66, 2002.
T. Mudge, and R. B. Brown. Mibench: A free, commer[23] SimpleScalar LLC

. . . SimpleScalar Hacker's ide.
cially representative embedded benchmark suit®rdre. 'mp gul

http://ww. si npl escal ar. con docs/ hack_gui de_v2. pdf (ac-

ISWG 2001. cessed 17th Dec 2006).
R. Hartenstein. Coarse grain reconfigurable architestu [24] SimpleScalar LLC. SimpleScalar Tutorial.
Embedded Tutorial, ASP-DAC 2001. http://ww. si npl escal ar. cond docs/ si npl et ut ori al .v4. pdf

(accessed 17th Dec 2006).
J. R. Hauser and J. Wawrzynek. Garp: a MIPS proces-))
sor with a reconfigurable coprocessor. Rroc. FCCM [25] Sun Microsystems. Java Hotspot Server VM: Dynamic

page 12. IEEE Computer Society, 1997. Compilation. http://java. sun. conl product s/ hot spot/ -
docs/ general / hs2. htm (accessed 29th Nov 2006).

Iﬁ[‘§6] D. Vassiliadis, N. Kavvadias, G. Theodoridis, and
S. Nikolaidis. A RISC architecture extended by an ef-
ficient tightly coupled reconfigurable unit. Proc. ARC

D. Lampret. OpenRISC 1200 (accessed 16 Jan 06). 2005.

http: // wwmv. opencores. org/ . [27] J. Whitham and N. Audsley. MCGREP - A Predictable

Architecture for Embedded Real-time SystemsPloc.
K. P. Lawton. Bochs: A Portable PC Emulator for RTSSpages 13—24, 2006.

Unix/X. Linux Journal 1996(29es):7, 1996.

G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis. T
Molen Media Processor: Design and EvaluationPtac.
WASR pages 26—33, September 2005.

