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Overview
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Simulator wanted!

Other simulators
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Real-Time Embedded
Systems

Special challenges for Real-time Embedded
(RTE) systems:

1. High Performance.

2. Easy WCET Analysis.

3. General Purpose.
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RTE Requirements

(1): High Performance
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RTE Requirements

(2): Easy WCET Analysis
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RTE Requirements

(3): General Purpose
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General Purpose?

But embedded systems are fixed purpose!

Or are they?
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General Purpose?

But embedded systems are fixed purpose!

Or are they?

General purpose features also useful for:

Bug fixes and extensions,

Reuse of old designs,

Run-time adaptation.
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MCGREP
Microcoded coarse-grained reconfigurable
processor: software controlled CPU
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MCGREP
Microcoded coarse-grained reconfigurable
processor: software controlled CPU

Aims of MCGREP:

1. Speed and predictability , approaching
custom hardware.

2. General purpose reusability , like a simple
CPU.
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Architecture
Both Coarse-grained Array and CPU.
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Architecture
Both Coarse-grained Array and CPU.

Many reprogrammable processors.

Each can run programs from external
memory and from internal microcode .

Microcode is used for hotspot execution.
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MCGREP Paradigm

Applications execute from external memory,
except when hotspots are reached.
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MCGREP Paradigm

Applications execute from external memory,
except when hotspots are reached.

Software binary translation is used to
retarget hotspots for the MCGREP array.

Hotspot tasks are distributed to all or part of
the reconfigurable array.

ILP exploited as multiple processors may be
used to execute each task.

Applications are speeded up, predictability
and reusability are retained.

UKEF 2007 – p. 10



Distributing
Hotspots (1)
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Distributing
Hotspots (2)
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Distributing
Hotspots (3)
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Distributing
Hotspots (4)
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Distributing
Hotspots (5)
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Distributing
Hotspots (6)
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Distributing
Hotspots (7)
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Distributing
Hotspots (8)
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Distributing
Hotspots (9)
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Simulation
Simulation is

The process of modelling the behaviour of
one system using another.
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Simulation
Simulation is

The process of modelling the behaviour of
one system using another.

Simulation allows experimentation with a new
design while only parts of the design are
complete.
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MCGREP Needs A
Simulator

A simulator is required:

1. for experiments using real programs.

UKEF 2007 – p. 21



MCGREP Needs A
Simulator

A simulator is required:

1. for experiments using real programs.

2. for hardware verification .

UKEF 2007 – p. 21



MCGREP Needs A
Simulator

A simulator is required:

1. for experiments using real programs.

2. for hardware verification .

3. for debugging MCGREP tools.
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Two Classes of
Simulator

There are two types of architectural simulator:

1. Functional (captures function but not timing),

2. Performance (captures function and timing).
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“Tao of Simulation”
The tradeoffs in simulator design:

Detail Flexibility

Performance

Pick two
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Example

Simplescalar:

Name Speed Detail Description
sim-fast Most Least Functional,

no checks
sim-safe Functional,

with checks
sim-uop Functional,

µop
sim-outorder Least Most Performance
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MCGREP Simulator
Requirements are sorted into priority order:

1. Detail - Architectural accuracy is essential.
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MCGREP Simulator
Requirements are sorted into priority order:

1. Detail - Architectural accuracy is essential.

2. Flexibility - Important for experimentation
and debugging, which require extensible
software.

3. Performance - Speed is important for testing
real applications.
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Simulator 1
First simulator:

1. Written in Python,

2. Approx. 1000 instructions per second,

3. Detailed and flexible, but very poor
performance,

4. Impossible to test real applications!
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Poor Performance
"fu_cmd"

1100 − binary data

ARITH_ADD − internal symbol

+ (addition) − Python operator

outputinputs

func_unit
simulator

Interpret

Execute +

Decode
fu_cmd
codec

microcode
object

Get_Value
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New Simulator

Configuration
Microcode model

Test driver

Code GeneratorSimulator C

gccSim CoreInterface
C/Python layer

x86

C

Run

Controller

RunHooks

1

4

2

3

5
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Flexibility

First simulator was extended by subclassing.
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Flexibility

First simulator was extended by subclassing.

New simulator is extended by hook
functions .
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Flexibility

First simulator was extended by subclassing.

New simulator is extended by hook
functions .

This is sufficient for current experiments and
tests.
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Performance

5,010,000

2,540,000

6,920,000

1240

Opteron 2.2GHz

Pentium 4 2.8GHz

SPARC 1.0GHz

Python Only

(Figures in instructions per second)
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Test Drivers
Driver 1: Tests this simulator by comparison with
another.

Used OpenRISC simulator.
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Test Drivers
Driver 1: Tests this simulator by comparison with
another.

Used OpenRISC simulator.

A trace was generated for a number of test
programs.

Test programs execute on MCGREP. On each
dispatch, the trace test driver compares trace
data against the register file.

Functional equivalence demonstrated!
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Test Drivers
Driver 2: Test hotspot operation.

Hotspots are executed by microcode...
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Applications

The simulator has been used for:

Experiments on MCGREP.
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Applications

The simulator has been used for:

Experiments on MCGREP.

Online compilation.

Debugging MCGREP.

And hardware development.
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Conclusion
The simulator has enabled:

New types of experiment (e.g. online
compilation).
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Conclusion
The simulator has enabled:

New types of experiment (e.g. online
compilation).

Unit testing of MCGREP hardware.

Debugging.

It has also improved performance by a factor of
1000.
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Questions?

jack@cs.york.ac.uk

Real Time Systems Group
Department of Computer Science

University of York
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