
A Self-Optimising
Simulator For A
Coarse-Grained

Reconfigurable Array
Jack Whitham and Neil Audsley

jack@cs.york.ac.uk

Real Time Systems Group

Department of Computer Science

University of York
UKEF 2007 – p.



Overview
MCGREP project summary

Simulator wanted!

Other simulators

Design & Implementation

Evaluation

Applications

Conclusion

UKEF 2007 – p.



Real-Time Embedded
Systems

Special challenges for Real-time Embedded
(RTE) systems:

1. High Performance.

2. Easy WCET Analysis.

3. General Purpose.

UKEF 2007 – p.



RTE Requirements

(1): High Performance

CPU
Simple

CPU
Advanced

X
te

ns
a

Custom
hardware

A
SI

C

M
ic

ro
bl

az
e

A
R

M
Speed

UKEF 2007 – p.



RTE Requirements

(2): Easy WCET Analysis

CPU
Simple

CPU
Advanced Custom

hardware

P
re

di
ct

ab
ili

ty

Speed

UKEF 2007 – p.



RTE Requirements

(3): General Purpose

CPU
Simple

CPU
Advanced Custom

hardware

Speed

R
eu

sa
bi

lit
y

UKEF 2007 – p.



General Purpose?

But embedded systems are fixed purpose!

Or are they?

UKEF 2007 – p.



General Purpose?

But embedded systems are fixed purpose!

Or are they?

General purpose features also useful for:

Bug fixes and extensions,

Reuse of old designs,

Run-time adaptation.

UKEF 2007 – p.



MCGREP
Microcoded coarse-grained reconfigurable
processor: software controlled CPU

UKEF 2007 – p.



MCGREP
Microcoded coarse-grained reconfigurable
processor: software controlled CPU

Aims of MCGREP:

1. Speed and predictability , approaching
custom hardware.

UKEF 2007 – p.



MCGREP
Microcoded coarse-grained reconfigurable
processor: software controlled CPU

Aims of MCGREP:

1. Speed and predictability , approaching
custom hardware.

2. General purpose reusability , like a simple
CPU.

CPU
Advanced

CPU
Simple

CPU
Advanced Custom

hardware

MCGREP

UKEF 2007 – p.



Architecture
Both Coarse-grained Array and CPU.

UKEF 2007 – p.



Architecture
Both Coarse-grained Array and CPU.

Many reprogrammable processors.

UKEF 2007 – p.



Architecture
Both Coarse-grained Array and CPU.

Many reprogrammable processors.

Each can run programs from external
memory and from internal microcode .

UKEF 2007 – p.



Architecture
Both Coarse-grained Array and CPU.

Many reprogrammable processors.

Each can run programs from external
memory and from internal microcode .

Microcode is used for hotspot execution.

UKEF 2007 – p.



MCGREP Paradigm

Applications execute from external memory,
except when hotspots are reached.

UKEF 2007 – p. 10



MCGREP Paradigm

Applications execute from external memory,
except when hotspots are reached.

Software binary translation is used to
retarget hotspots for the MCGREP array.

UKEF 2007 – p. 10



MCGREP Paradigm

Applications execute from external memory,
except when hotspots are reached.

Software binary translation is used to
retarget hotspots for the MCGREP array.

Hotspot tasks are distributed to all or part of
the reconfigurable array.

UKEF 2007 – p. 10



MCGREP Paradigm

Applications execute from external memory,
except when hotspots are reached.

Software binary translation is used to
retarget hotspots for the MCGREP array.

Hotspot tasks are distributed to all or part of
the reconfigurable array.

ILP exploited as multiple processors may be
used to execute each task.

UKEF 2007 – p. 10



MCGREP Paradigm

Applications execute from external memory,
except when hotspots are reached.

Software binary translation is used to
retarget hotspots for the MCGREP array.

Hotspot tasks are distributed to all or part of
the reconfigurable array.

ILP exploited as multiple processors may be
used to execute each task.

Applications are speeded up, predictability
and reusability are retained.

UKEF 2007 – p. 10



Distributing
Hotspots (1)

UKEF 2007 – p. 11



Distributing
Hotspots (2)

UKEF 2007 – p. 12



Distributing
Hotspots (3)

UKEF 2007 – p. 13



Distributing
Hotspots (4)

UKEF 2007 – p. 14



Distributing
Hotspots (5)

UKEF 2007 – p. 15



Distributing
Hotspots (6)

UKEF 2007 – p. 16



Distributing
Hotspots (7)

UKEF 2007 – p. 17



Distributing
Hotspots (8)

UKEF 2007 – p. 18



Distributing
Hotspots (9)

UKEF 2007 – p. 19



Simulation
Simulation is

The process of modelling the behaviour of
one system using another.

UKEF 2007 – p. 20



Simulation
Simulation is

The process of modelling the behaviour of
one system using another.

Simulation allows experimentation with a new
design while only parts of the design are
complete.

UKEF 2007 – p. 20



MCGREP Needs A
Simulator

A simulator is required:

1. for experiments using real programs.

UKEF 2007 – p. 21



MCGREP Needs A
Simulator

A simulator is required:

1. for experiments using real programs.

2. for hardware verification .

UKEF 2007 – p. 21



MCGREP Needs A
Simulator

A simulator is required:

1. for experiments using real programs.

2. for hardware verification .

3. for debugging MCGREP tools.

UKEF 2007 – p. 21



Two Classes of
Simulator

There are two types of architectural simulator:

1. Functional (captures function but not timing),

2. Performance (captures function and timing).

UKEF 2007 – p. 22



“Tao of Simulation”
The tradeoffs in simulator design:

Detail Flexibility

Performance

Pick two

UKEF 2007 – p. 23



Example

Simplescalar:

Name Speed Detail Description
sim-fast Most Least Functional,

no checks
sim-safe Functional,

with checks
sim-uop Functional,

µop
sim-outorder Least Most Performance

UKEF 2007 – p. 24



MCGREP Simulator
Requirements are sorted into priority order:

1. Detail - Architectural accuracy is essential.

UKEF 2007 – p. 25



MCGREP Simulator
Requirements are sorted into priority order:

1. Detail - Architectural accuracy is essential.

2. Flexibility - Important for experimentation
and debugging, which require extensible
software.

UKEF 2007 – p. 25



MCGREP Simulator
Requirements are sorted into priority order:

1. Detail - Architectural accuracy is essential.

2. Flexibility - Important for experimentation
and debugging, which require extensible
software.

3. Performance - Speed is important for testing
real applications.

UKEF 2007 – p. 25



Simulator 1
First simulator:

1. Written in Python,

2. Approx. 1000 instructions per second,

3. Detailed and flexible, but very poor
performance,

4. Impossible to test real applications!

UKEF 2007 – p. 26



Poor Performance
"fu_cmd"

1100 − binary data

ARITH_ADD − internal symbol

+ (addition) − Python operator

outputinputs

func_unit
simulator

Interpret

Execute +

Decode
fu_cmd
codec

microcode
object

Get_Value

UKEF 2007 – p. 27



New Simulator

Configuration
Microcode model

Test driver

Code GeneratorSimulator C

gccSim CoreInterface
C/Python layer

x86

C

Run

Controller

RunHooks

1

4

2

3

5

UKEF 2007 – p. 28



Flexibility

First simulator was extended by subclassing.

UKEF 2007 – p. 29



Flexibility

First simulator was extended by subclassing.

New simulator is extended by hook
functions .

UKEF 2007 – p. 29



Flexibility

First simulator was extended by subclassing.

New simulator is extended by hook
functions .

This is sufficient for current experiments and
tests.

UKEF 2007 – p. 29



Performance

5,010,000

2,540,000

6,920,000

1240

Opteron 2.2GHz

Pentium 4 2.8GHz

SPARC 1.0GHz

Python Only

(Figures in instructions per second)
UKEF 2007 – p. 30



Test Drivers
Driver 1: Tests this simulator by comparison with
another.

Used OpenRISC simulator.

UKEF 2007 – p. 31



Test Drivers
Driver 1: Tests this simulator by comparison with
another.

Used OpenRISC simulator.

A trace was generated for a number of test
programs.

UKEF 2007 – p. 31



Test Drivers
Driver 1: Tests this simulator by comparison with
another.

Used OpenRISC simulator.

A trace was generated for a number of test
programs.

Test programs execute on MCGREP. On each
dispatch, the trace test driver compares trace
data against the register file.

UKEF 2007 – p. 31



Test Drivers
Driver 1: Tests this simulator by comparison with
another.

Used OpenRISC simulator.

A trace was generated for a number of test
programs.

Test programs execute on MCGREP. On each
dispatch, the trace test driver compares trace
data against the register file.

Functional equivalence demonstrated!

UKEF 2007 – p. 31



Test Drivers
Driver 2: Test hotspot operation.

Hotspots are executed by microcode...

UKEF 2007 – p. 32



Test Drivers
Driver 2: Test hotspot operation.

Hotspots are executed by microcode...

Microcode execution should be equivalent to
“normal” execution.

UKEF 2007 – p. 32



Test Drivers
Driver 2: Test hotspot operation.

Hotspots are executed by microcode...

Microcode execution should be equivalent to
“normal” execution.

The microcode test driver compares results of
two types of execution.

UKEF 2007 – p. 32



Test Drivers
Driver 2: Test hotspot operation.

Hotspots are executed by microcode...

Microcode execution should be equivalent to
“normal” execution.

The microcode test driver compares results of
two types of execution.

Functional equivalence demonstrated!

UKEF 2007 – p. 32



Applications

The simulator has been used for:

Experiments on MCGREP.

UKEF 2007 – p. 33



Applications

The simulator has been used for:

Experiments on MCGREP.

Online compilation.

UKEF 2007 – p. 33



Applications

The simulator has been used for:

Experiments on MCGREP.

Online compilation.

Debugging MCGREP.

UKEF 2007 – p. 33



Applications

The simulator has been used for:

Experiments on MCGREP.

Online compilation.

Debugging MCGREP.

And hardware development.

UKEF 2007 – p. 33



Conclusion
The simulator has enabled:

New types of experiment (e.g. online
compilation).

UKEF 2007 – p. 34



Conclusion
The simulator has enabled:

New types of experiment (e.g. online
compilation).

Unit testing of MCGREP hardware.

UKEF 2007 – p. 34



Conclusion
The simulator has enabled:

New types of experiment (e.g. online
compilation).

Unit testing of MCGREP hardware.

Debugging.

It has also improved performance by a factor of
1000.

UKEF 2007 – p. 34



Questions?

jack@cs.york.ac.uk

Real Time Systems Group
Department of Computer Science

University of York

UKEF 2007 – p. 35


	Overview
	Real-Time Embedded Systems
	RTE Requirements
	RTE Requirements
	RTE Requirements
	General Purpose?
	General Purpose?

	MCGREP
	MCGREP
	MCGREP

	Architecture
	Architecture
	Architecture
	Architecture

	MCGREP Paradigm
	MCGREP Paradigm
	MCGREP Paradigm
	MCGREP Paradigm
	MCGREP Paradigm

	header (1)
	header (2)
	header (3)
	header (4)
	header (5)
	header (6)
	header (7)
	header (8)
	header (9)
	Simulation
	Simulation

	MCGREP Needs A Simulator
	MCGREP Needs A Simulator
	MCGREP Needs A Simulator

	Two Classes of Simulator
	``Tao of Simulation''
	Example
	MCGREP Simulator
	MCGREP Simulator
	MCGREP Simulator

	Simulator 1
	Poor Performance
	New Simulator
	Flexibility
	Flexibility
	Flexibility

	Performance
	Test Drivers
	Test Drivers
	Test Drivers
	Test Drivers

	Test Drivers
	Test Drivers
	Test Drivers
	Test Drivers

	Applications
	Applications
	Applications
	Applications

	Conclusion
	Conclusion
	Conclusion

	Questions?

