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Abstract

The problem of worst-case execution time (WCET)

analysis of complex CPUs is addressed in this paper us-

ing a proposed architectural modification. The virtual

trace controller (VTC) constrains execution to follow only

the paths that have been considered by the WCET analy-

sis model, allowing the WCET to be determined safely by

measurement. Each path has a constant execution time

regardless of CPU complexity because the VTC enforces

predictable operation. This paper evaluates the VTC us-

ing benchmark programs and the M5 simulator.

The results show that guaranteed throughput is in-

creased for many programs using the constrained CPU

model versus an idealized in-order design, indicating that

the VTC can make complex CPU designs operate pre-

dictably without reducing throughput to the level of a sim-

ple CPU design. Additional results provide more informa-

tion about the implications of each of the VTC features. Of

all the restrictions introduced for predictability, disabling

memory forwarding has the greatest effect on the maxi-

mum throughput, although conditional branches can also

be significant. This paper suggests ways to improve the

VTC to increase the guaranteed throughput.

1 Introduction

This paper proposes and evaluates an architectural so-

lution for three issues related to the problem of worst-case

execution time (WCET) analysis, which is an important

component of timing analysis for real-time software [23].

The issues are: (1) minimizing pessimism in analysis, (2)

increasing the CPU throughput that can be guaranteed,

and (3) minimizing CPU modeling costs. WCET analysis

determines the longest possible execution time for a spe-

cific program on a specific CPU. Previous approaches have

achieved this by modeling the program and CPU, either

explicitly [14] or by using execution time measurements

for sections of the code [6, 19].

Modeling and measurement are most difficult for CPUs

that use speculative and out-of-order execution. These

CPUs include an operation scheduler heuristic that ex-

ecutes instructions as early as possible, exploiting in-

struction level parallelism (ILP) [26] to increase through-

put. The operation scheduler is affected by timing noise

from many sources, causing execution times to vary un-

predictably. Timing noise is any interference that might

change the timing of an execution path, and it makes de-

termining the worst case difficult. While sources of tim-

ing noise can be explicitly modeled, this is costly because

of the complexity of the CPU design. Pessimism is in-

troduced whenever it is not possible to be certain of tim-

ing, with the result that the throughput of an out-of-order

CPU over an in-order design may not be guaranteed [25].

(Throughput is the effective execution speed of the CPU

running the tasks; guaranteed throughput is the worst-case

execution speed for those tasks.)

This paper introduces the virtual trace controller

(VTC) as a modification for a CPU of arbitrary complex-

ity. It constrains the CPU operation so that a program is

executed as a collection of traces (Figure 1). In this form,

each execution path has an execution time that (1) is pre-

cisely known (so pessimism is minimized), (2) can be ob-

tained by measurement (so modeling costs are zero; the

CPU hardware is the model), and (3) can take advantage of

out-of-order execution to maximize throughput. The VTC

guarantees that traces always execute in the same way by

eliminating sources of timing noise in the pipeline. The

WCET can be obtained safely and the traces can be op-

timized to reduce the WCET. Preemption does not affect

trace execution times and is permitted on any boundary

between virtual traces. It is possible to set a maximum

preemption latency by limiting the trace size.

The contributions of this paper are: (1) a CPU-

independent description of traces, the VTC and the pro-

cess for program conversion; (2) a description of the im-

plementation of O3+VTC (VTC extensions for the M5 Al-

pha simulator [7]); and (3) an evaluation of the VTC that

considers ways to increase the guaranteed throughput.

The structure of this paper is as follows. Section 2 has

background information on traces. Section 3 describes

virtual traces and the VTC, then section 4 discusses the

O3+VTC implementation, which is used to carry out some

experiments in section 5. Section 6 has related work and

section 7 concludes.

2 Background - Traces for WCET Analysis

Traces are executable representations of paths through

a program [12]. Typically, implementing part of a pro-

gram using a trace will change the execution time but not
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Figure 1. Two representations of a program fragment. Left: a control flow graph (CFG) in which
the atomic unit of code for WCET analysis is a basic block. This representation is useful
when code executes in program order. Right: a trace control flow graph (TCFG), composed
of traces. The functionality of both graphs is identical but the WCET of the TCFG is
lower, because speculative and out-of-order execution is possible within each basic block
and between the two basic blocks. Consequently more instructions are executed in parallel.
Execution times are from the O3+VTC and IIO simulators (section 5); the code is from [18].

the functionality of the program. In this work, traces are

used as a framework to model speculative and out-of-order

program execution. Traces have previously been used to

reduce the average execution time of programs on explic-

itly parallel CPUs [12] such as very long instruction word

(VLIW) machines [13]. But because trace execution can

be extremely predictable, the paradigm is also useful to

enable (1) WCET analysis, and (2) WCET reduction. The

discussion is limited to predictable traces which are traces

in which every path has a fixed execution time. (In VLIW

machines, traces are not necessarily predictable.)

Example. Figure 1 shows two representations of a pro-

gram fragment that carries out a fast discrete cosine trans-

form (FDCT), an operation that is used for image compres-

sion. The trace control flow graph (TCFG) is composed

of traces while the CFG is composed of basic blocks. The

CFG runs on a conventional CPU that executes code in-

order and consequently cannot achieve any less than 202

clock cycles for the 202 instructions in each fdct ba-

sic block. The overall WCET for the fragment is 404.

However, the TCFG allows a CPU to do better without

sacrificing predictability. The WCET is reduced by bias-

ing speculative execution towards the worst-case execu-

tion path (WCEP). In this case, the WCEP runs through

both fdct(0) and fdct(1), so the main path of the trace

is fdct(0) followed by fdct(1). (Each trace has ex-

actly one main path: main paths are formed as subpaths

of the WCEP.) When the trace executes, the CPU is able

to exploit ILP within fdct(0) and assume that fdct(1)

will follow fdct(0), so additional ILP can be obtained

by executing operations from fdct(1) as early as possi-

ble. The benefit of allowing this predictable speculation is

a reduction of the WCET from 404 to 253. If fdct(1) is

not executed, then a side exit is taken, and the execution

time is 137 instead of 202.

The TCFG is built after a conventional compiler has

produced a program binary and CFG (algorithms for do-

ing this are examined in [29]). Representing a program

as a TCFG has three significant effects. Firstly, if traces

are allocated correctly, the WCET can be reduced, and

hence the guaranteed throughput of the CPU is increased.

Secondly, in every case where the program itself can be

modeled, the WCET can be determined accurately since

the execution times in each trace are constant. Thirdly,

it is possible to determine every trace execution time by

measurement. Traces have the following timing model for

WCET analysis purposes:

1. A trace replaces sequential machine code in one or

more basic blocks. A trace always begins execution at an

entrance e (a basic block) and has 1 ≤ n ≤ L exits. Exits

lead to other traces. The example in Figure 1 has n = 2
exits and entrance e = fdct(0).

2. A trace requires an exact number of clock cycles to

reach each one of the n exits from the entrance. The path

through branch i from entrance e is denoted as Pe,i for

WCET analysis purposes (a basic block sequence). The

time taken is t(Pe,i), a constant.

3. A trace has up to L − 1 conditional branches along

the main path Pe,0. Every other path Pe,i (i 6= 0) also

follows Pe,0 until branch i is reached, when a side exit is

taken. Pe,0 continues to the main exit. The example in

Figure 1 has t(Pe,0) = 253 and t(Pe,1) = 137.

Traces support WCET analysis by any well-known

method; the implicit path enumeration technique

(IPET) [15] has previously been applied to traces [28] but

other methods such as tree and graph-based analysis are

also applicable [4, 9, 22].

2.1 Implementing Traces

During program execution, additions to the CPU con-

strain execution, ensuring that t(Pe,i) values cannot vary

in the traces that are executed. One implementation of



add VTC and VTR hardware. These are a small

state machine (Figure 4) and an L-bit register

(Figure 5) with almost negligible area cost.

remove Cache updating logic is not needed because

scratchpads are used instead; this may cause a

reduction in the size of the on-chip memory area

of around 34% [2].

add New scratchpad for virtual trace data - this is

smaller than the instruction scratchpad since it

has one L-bit entry per basic block instead of

one 32-bit entry per instruction.

remove Branch predictor, memory access predictor:

neither are used. Both contain RAM.

Figure 2. The silicon area used by a vir-
tual trace CPU may be smaller than that
of a regular CPU with the same pipeline.

traces uses microprograms within a trace scratchpad [30].

The microprograms explicitly encode the operations to be

executed: the CPU resembles a VLIW machine that can

(1) execute both wide (explicitly parallel) and narrow (se-

quential) instructions, and (2) uses scratchpad memory in

place of caches. (Scratchpads are on-chip memories sim-

ilar to caches, but controlled directly by programs [2].

They have been proposed as predictable replacements for

caches [21].)

Although this approach can be used to reduce WCETs

there are three major problems. Firstly, a specialist CPU is

required. Secondly, a specialist compiler (matched to the

CPU) is also needed to convert traces into microprograms

for the scratchpad. Thirdly, the information density of the

microprograms is poor, so a small scratchpad memory can-

not hold more than a small part of a program. In [30], less

than ten traces are used for each program and resource us-

age is far from optimal.

The third problem can be addressed by (1) combining

conventional execution (for rarely-used code) with trace

execution (for code that is frequently executed in the worst

case), and (2) by using an allocation process to optimize

the use of scratchpad space [30]. The problem can also be

addressed by dynamically updating the scratchpad during

execution [28], but the time taken to update the scratchpad

is significant (again due to the poor information density).

WCET reductions can be obtained in both cases, and hence

guaranteed throughput is increased, but the problems with

the approach suggest that custom microprogramming is

not the best solution to the issues with WCET analysis.

It requires fully custom CPUs and compilers, micropro-

grams consume too much valuable on-chip memory space,

and loading new microprograms is also costly.

3 Virtual Traces

In this paper, virtual traces are proposed as an alterna-

tive to the microcoded implementation described in sec-

tion 2.1. Microprogramming is not used. Instead, vir-

Dynamic Scheduler

Data Cache Stall

Cache Stall

Instructions

Instruction

Instruction

Predictions

Misprediction Detected

Memory Dependence

Misprediction Detected

Exception Detected

Execution unit

Load/store unit

Variable Duration

Figure 3. Sources of timing noise that
could affect the operation of a dynamic
operation scheduler.

tual traces are sequences of commands for a virtual trace

controller (VTC), which has two purposes: (1) eliminate

sources of timing noise within the CPU, and (2) force pre-

dicted execution to proceed along the main path of the cur-

rent virtual trace. The result is functionally equivalent to

normal execution, but as with microprogrammed traces,

timing is predictable. The new type of trace is virtual

in the sense that its full form (microoperations) is never

stored in RAM, as it passes directly from the CPU sched-

uler to the execution units. Virtual traces can be applied to

almost any synchronous (single clock domain) CPU core

by implementing some modifications; the benefit is a po-

tential increase in guaranteed throughput without any need

to adopt an unusual CPU architecture. The modifications

may even lower the silicon cost of building a CPU core

(Figure 2), although the area cost will be increased slightly

if the CPU must support both dynamic and virtual trace

modes of execution.

Timing noise is defined as any sort of interference that

could change the execution time of a path Pe,i through

a trace. Figure 3 shows the sources of timing noise in a

typical out-of-order CPU. A cache miss or an opportunity

for memory forwarding could change the order in which

operations become ready to execute; an exception might

change the sequence of operations that can be executed.

An explicit WCET analysis model would attempt to cap-

ture all the possibilities. However, a synchronous CPU

core is a deterministic device, i.e. given known inputs and

a known starting state, the output is also known, so timing

noise can be eliminated by removing unpredictable inputs.

Changes are implemented to control the following sources

of timing noise:

1. Previous pipeline state. The theory of timing anoma-

lies indicates that the previous state of the CPU can af-

fect future execution in unpredictable ways [16], so the

pipeline needs to be synchronized to a known state. This

could be done in two ways: (1) an explicit reset function

that clears all blocks from the CPU pipeline, or (2) a drain



(1) Initializing

When an instruction is fetched, e.g. at the start point in Fig-

ure 1, the associated virtual trace information is also fetched

and stored in a new virtual trace register (VTR) shown in

Figure 5. Virtual trace information exists for each basic

block and is stored in scratchpad RAM. Virtual traces are

lists of static branch predictions, laid out along an execution

path rather than being placed in instruction memory. Each

item refers to one branch instruction: taken or not taken.

(2) Running

As execution continues, the VTC feeds the fetch hardware

with branch predictions from the VTR, guiding the dynamic

operation scheduler along the main path. In Figure 1, the

trace says that fdct(0) is followed by fdct(1), but

functionality will be preserved if the branch to the side exit

is taken instead.

(3) Resynchronizing

When either (1) a side exit (branch misprediction) is de-

tected, or (2) the supply of branch predictions in the VTR

is exhausted, the VTC halts instruction fetching until the

CPU pipeline is empty. This operation returns the pipeline

to a known state; once this is done, the VTC moves to the

Initializing state and execution continues.

Figure 4. The VTC state machine enforces
isolation between virtual traces. It fits
into a CPU architecture as in Figure 5.

function that allows the CPU pipeline to empty by halting

the fetch process. This paper chooses the latter strategy

since the implementation is simple (Figure 4). This ar-

rangement permits timing anomalies within a trace, since

the CPU scheduler makes dynamic resource allocation de-

cisions [27]. However (1) they are guaranteed to affect

execution in the same way since timing noise is controlled

(t(Pe,i) is constant for each path) and (2) they have no ef-

fect on subsequent execution because the pipeline is resyn-

chronized at the end of each trace.

2. Variable Duration Instructions. Because these are

data dependent, they might cause some t(Pe,i) to vary,

e.g. when operating on large numbers. Timing noise is

eliminated by modifying the execution units to enforce

constant execution times.

3. Cache stalls. In an out-of-order CPU, cache stalls

only block the instructions that are dependent on a partic-

ular access. The CPU continues fetching, decoding and

executing other instructions. Any cache effect may intro-

duce timing noise by delaying an instruction or forcing a

different execution order. In this paper, the applied so-

lution is the use of scratchpad memory (section 2.1) to re-

place the instruction and data caches with fully predictable

memories (Figure 5).

4. Memory dependence mispredictions. Some out-

of-order CPUs speculate about the relationships between

memory access instructions in order to expose more ILP.

This type of speculation creates timing noise as it fails un-

predictably. This is avoided by changing the operation

scheduler to enforce a safe ordering on memory opera-

tions: load operations cannot be reordered across store op-

erations, and store operations cannot be reordered at all.

5. Branch predictions fit into the virtual trace model.

The dynamic branch predictor is replaced with data from

the current virtual trace, delivered by the mechanism

shown in Figure 5. The VTC state machine (Figure 4)

implements branch misprediction events as side exits. An-

other restriction ensures that branch operations are exe-

cuted in program order, since that prevents two or more

misprediction events being active at the same time. This is

done using the instruction dependence mechanism.

6. Exceptions occur when an instruction cannot com-

plete normally, e.g. a load from a non-existent memory

address. They can be modeled as conditional branches,

but the sheer number of operations that could generate ex-

ceptions would make this sort of analysis intractable. The

easiest strategy is to ignore exceptions; many programs do

not use them.

Timing noise can also be introduced by preemption.

This can be avoided by forcing preemption to occur only

on boundaries between virtual traces, i.e. after resynchro-

nization. Very long traces could lead to high preemp-

tion latency, but since the maximum preemption latency

is known (max(t(Pe,i))), trace lengths can be limited to

ensure that the latency is appropriate for the application.

4 Implementation using M5

This section describes the implementation of the VTC

within the M5 simulator [7]. An example of its application

is given in section 4.1. Section 4.2 explains how the VTC

allows measurements to be used safely in place of explicit

modeling.

M5 is an open-source simulator for computer architec-

ture research [7]. It has been used by a wide variety of

research projects [17] as it is easily extended to serve a

new purpose. As originally published, M5 includes simu-

lated memory systems, CPUs and hardware devices which

can be connected together to make clusters of simulated

computers. M5’s CPU simulator can be operated in a

“fast” mode where the functionality of each device is sim-

ulated but correct timing is ignored, or in a “detailed”

mode where both timing and functionality are simulated

precisely. This paper uses the detailed mode and adopts

the O3 out-of-order CPU for the work. O3 is configured

for the Alpha instruction set architecture (ISA), a RISC

ISA that was designed for dynamic out-of-order execution.

O3’s default resources are outlined in Table 1.

O3 is modified to include the VTC, creating a new CPU

named O3+VTC. Other M5 subsystems are unchanged

since the only requirement is that they must respond with

deterministic timing (section 3) and this is achieved by

stalling O3+VTC whenever an external component is not

ready. (This is not realistic in a real design due to propa-



����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

Fetch unit

Execution units

Load/store
unit

Data

scratchpad and
memory i/face

VTC

VTR

Memory for encoded
virtual traces

Dynamic Scheduler

and CPU pipeline

Load/store
unit

Execution unitsFetch unit

Data cache
and memory i/face

Instruction cache
and memory i/face

Dynamic Scheduler

and CPU pipeline

Address

Machine code

Pipeline is empty

M
icro

o
p
era

tio
n
s

A
d
d
ress L

o
a
d
 V

T
R

sig
n
a
l en

d

G
et n

ext
p
red

ictio
n

New component

Replacement for conventional cache

Instruction

scratchpad and
memory i/face

(a) Block diagram of a conventional superscalar CPU

(b) Block diagram of modified "virtual trace" CPU

Conventional CPU component with no changes or minor changes

Enable/disable fetch

Predict taken/not taken

P
red

ict ta
ken

/n
o
t ta

ken

o
f tra

ce

Squash notify

Figure 5. Block diagram of a CPU core,
(a) before and (b) after the VTC and
VTR are added. The scheduler, pipeline
and execution units are unchanged.

gation delays, but it is suitable as a model for scratchpad

memories [2, 21] as “caches that never miss”.) The im-

plementation takes the form of patches applied to the C++

and Python source code of M5. O3+VTC is O3 with the

following changes:

Patch P1. Instruction fetch unit1: an interface to the

VTC is added. This relays four types of message between

the VTC and the instruction fetch (IF) unit: (1) Branch

predictions (VTC → IF); (2) Empty pipeline notifications

(IF → VTC); (3) Squash notifications (IF → VTC); gen-

erated when a branch misprediction is detected, and (4)

Fetch enable/disable commands (VTC → IF) which allow

the VTC to pause instruction fetching at the end of a vir-

tual trace. This is used to resynchronize the pipeline for

the next trace.

Patch P2. Instruction decoder2: an extra dummy regis-

1In src/cpu/o3/fetch impl.hh.
2In src/arch/alpha/isa/main.isa,

Resource type Count Latency

Integer ALUs 6 1

Integer Mult/Div 2 3/20

Float Add/Cmp 4 2

Float Mult/Div 2 4/12

Memory Read/Write 2 1

Table 1. O3 provides a large number of re-
sources for code execution, so the limit on
execution speed is imposed by the code
itself (the degree of ILP) rather than the
pipeline. Latencies are in clock cycles.

ter is added as an input and output of every branch instruc-

tion. This register holds no data. It exists only to force

branch operations to execute in program order, which is

necessary to preserve trace semantics.

Patch P3. Memory dependence unit3: modifications

are made here to enforce a strict order on memory opera-

tions that is explicitly safe.

Patch P4. Load/store queue unit4: forwarding infor-

mation between memory operations is disabled because it

is dependent on the effective addresses being used. (This

change is a matter of deactivating some functionality.) Ad-

ditionally, memory exceptions are ignored.

Other changes were made in order to ensure that

the memory subsystem responds deterministically (as de-

tailed above). The modified simulator ignores translation-

lookaside buffer (TLB) exceptions, and simulates the use

of scratchpads for all storage. Furthermore, it assumes

that programs communicate with the outside world via

emulated Linux system calls, which are forwarded to

the host operating system. Implementation also required

some minor extensions to the microoperations used within

O3+VTC, which are known as dynamic instructions in the

source code. The principle change was the addition of new

flags to each dynamic instruction to allow branches to be

forced “taken” or “not taken” by the VTC, and to allow

instructions to be marked “fake”. Fake instructions exe-

cute as usual, but have no effect (unlike no-ops which are

discarded by the CPU). Both of these features are used for

measuring t(Pe,i) values since they allow CPU operation

to be tested along any path without changing the memory

or registers.

The VTC is an implementation of the state machine in

Figure 4. It is used in conjunction with a driver program

that can measure the execution time of every path through

every trace for a specific TCFG, i.e. obtain all t(Pe,i) val-

ues. The driver program is also able to use the CPU to exe-

cute the program. It may execute as a TCFG (using traces,

with the VTC enabled), or as a CFG (using a less pre-

src/arch/alpha/isa/branch.isa.
3In src/cpu/o3/mem dep unit impl.hh,

src/cpu/o3/lsq unit impl.hh.
4In src/cpu/o3/lsq unit.hh.
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Figure 6. A sample program (a), with its
CFG (b), its TCFG (c) (using L = 4 to un-
roll the loop), and its T-graph (d). The
execution timings were measured using
the modified O3 CPU. Each execution tim-
ing is an integer constant, independent of
data and the previous state of the CPU.

dictable CPU, e.g. with dynamic branch prediction used in

place of traces). This enables comparison and testing.

4.1 Example: Exact Execution Times

Figure 6(a) shows a loop that sums all of elements in an
array, compiled from the following C code:

for (t4=0; t4 != t5; t4++) {

t2 += *t3;

t3 += 4;

}

The loop is implemented in Alpha machine code, since

O3+VTC uses this ISA. The CFG, TCFG and T-graph of

this code are shown in Figures 6(b), (c) and (d). The VTC

driver program allows us to obtain the t(Pe,i) values for

the program running on O3+VTC, which are added to the

TCFG (Figure 6(c)). In the TCFG, the loop has been un-

rolled three times, but the unrolling has not changed the

machine code as a compile-time optimization would, as

it takes place within the CPU. The trace merely models

the unrolling process, which is a by-product of speculative

execution. The CPU throughput is lowest when the loop

bound t5 = 1 because the ratio between t(Pe,i) and the loop

bound t5 is at its greatest. Larger values of t5 make better

use of CPU resources. The second unrolled iteration costs

just 1 extra clock cycle, the third costs nothing. This is

because those future iterations have already been executed

speculatively.

Even if the degree of speculative execution is not so

extreme, there is always a substantial cost to running any

trace due to the time taken to resynchronize the pipeline

and restart from the known state. This minimum trace cost

is dependent on the specific implementation of traces in

use, i.e. the O3+VTC pipeline and its configuration. It is

analogous to the pipeline latency.

The traces in a program are planned during the TCFG

building step. Within the TCFG, each trace could be a sin-

gle basic block, but that would mean that the CPU would

be poorly utilized as most of its time would be spent resyn-

chronizing and filling the pipeline rather than executing:

predictable, but with poor throughput. Therefore, traces

are formed along paths that contribute the most to the

WCET. CFG → TCFG conversion can be carried out us-

ing a variety of standard algorithms [13], which are con-

ventionally focused on minimizing average case execution

time (ACET). However, CFG → TCFG conversion can

also be WCET-focused [29].

The TCFG → T-graph conversion (Figure 6(c) and (d))

is straightforward: the dual form of the TCFG is obtained

(edges and vertices are exchanged). The edges of a T-

graph represent executable code (parts of a trace) and are

associated with a worst-case execution count f and an ex-

ecution cost γ. The vertices represent branches and join

points. Every t(Pe,i) is obtained by measurement, then

the γ values are obtained by assigning non-negative in-

tegers to T-graph edges such that the total cost of every

path Pe,i is t(Pe,i). The T-graph and γ values are com-

bined with behavioral constraints, such as upper bounds

on loop iterations. These can be specified as part of the

source code [8], and approaches exist to derive them au-

tomatically for some programs [10]. The T-graph, γ val-

ues and behavioral constraints make a complete program

model for IPET analysis, and the T-graph is analyzed as if

it were composed of basic blocks [24]. In cases where a

single basic block appears in more than one trace, or sev-

eral times in a single trace, the behavioral constraints apply

to the sum of the number of executions of that block. The

IPET equations that are used are detailed in [28, 30].

In the example, increasing L would result in (1) a larger

TCFG and T-graph with more loop unrolling, (2) more

t(Pe,i) values, and (3) a change to the WCET. Table 2

shows the t(Pe,i) values for Figure 6(a) and L = 20. As

before, the greatest throughput is obtained when no exits

are taken: 19 iterations are executed for a cost of 30 clock

cycles. The lowest throughput is obtained when the first

exit is taken: 14 clock cycles for a single iteration. After

that, future iterations take approximately one clock cycle

until improvements tail off and timings become roughly

constant due to the halted fetch process. The high start-up

cost (approximately 14 clock cycles) is typical of all types

of trace. It is irrelevant provided that the overall WCET is

reduced, as it will be if the loop bound t5 is large.

The changes to the CPU core are designed to ensure

that t(Pe,i) values are constant. Implementation errors can

be debugged by repeatedly measuring execution times in



i ti i ti i ti i ti

1 14 6 20 11 25 16 30

2 16 7 21 12 26 17 30

3 17 8 22 13 27 18 30

4 18 9 23 14 28 19 30

5 19 10 24 15 29 0 30

Table 2. Execution times of every path
through Figure 6(a) with trace length
L = 20. i = 0 is the main path, i = 1
is the path if the first exit is taken, and
so on.

Program IIO O3+VTC

L = 1 L = 10 L = 20

bs 92 272 82 85

bubble 5286 16011 8754 8480

cnt 3580 4024 2806 2787

compress 3545 6512 4222 4093

crc 21096 35583 21173 21082

duff 496 600 510 515

edn 97001 76486 45298 43227

expint 533 1482 437 389

fdct 3410 2328 2093 2100

fibcall 44 114 27 28

fir 2988 3665 1325 1206

insertsort 887 1728 739 676

janne complex 348 728 316 299

jfdctint 3467 2511 1560 1509

matmult 142810 191662 128089 124595

ndes 40284 49993 25574 23294

ns 2852 9981 2815 1691

Table 3. Execution times of benchmark
programs on IIO and O3+VTC (clock cycles).

a randomized order: the driver program includes support

for this. In the case of Figure 6, this would be checked by

(1) randomly choosing a path i, (2) measuring t(Pe,i), and

then (3) selecting another path and repeating the process.

If timings ever change, an error has been detected.

4.2 No CPU Modeling Required

This paper avoids discussion of the internal layout of

the O3 CPU in this paper. This is because the details are

irrelevant. The work treats O3+VTC as a black box, as

there is no need to model the internals of the CPU because

all behavior is captured by VTC measurement. The TCFG

includes all possible paths through the program, each com-

posed of members of the set of all paths Pe,i, and programs

never leave that set during execution. Therefore, obtaining

all t(Pe,i) values for a program provides everything that

is needed by the WCET analysis model. This avoids the

costly engineering of an explicit model [14], or the need

to use probabilistic methods [5] since the VTC restricts

the behavior that is possible.

The exact nature of t(Pe,i) values allows exact analy-

sis, i.e. zero pessimism in WCET analysis. It is known that

IPET computes the exact WCET value if all behavioral

constraints are known [24], and the use of traces does not

prevent this since traces can be converted to T-graphs. In

general, pessimism is introduced from two places: (1) in-

accuracies in the model of the CPU, which force the worst

case to be assumed, and (2) infeasible paths in the model

of the program. The first source is eliminated by the VTC:

there are no inaccuracies in the timing model. The second

source can be eliminated by better constraints that describe

more about the program.

5 Experiment

O3+VTC can be used to experiment with virtual traces.

This section compares O3+VTC against other CPUs, be-

ginning with an idealized in-order CPU which is named

IIO. IIO is deliberately easy to model for WCET analysis:

it has the same execution units as O3+VTC, so instructions

have the same latency on both CPUs (Table 1), but IIO’s

pipeline has no latency and there is no branch prediction.

All instructions execute in program order: IIO does not use

ILP. This section does not consider preemption, although it

is supported in principle by the O3+VTC implementation.

To make comparisons as realistic as possible, bench-

mark programs are used (Table 3). The corpus is the

Mälardalen WCET benchmark suite [18], which is specif-

ically intended to support WCET-related research. It is

assumed that the benchmark programs are single-path pro-

grams, i.e. that they have fixed input and therefore always

execute in the same way, since this allows a single mea-

surement to be considered as the WCET, avoiding WCET

analysis. However, the findings still apply even if the pro-

grams are not single-path, because IPET and other meth-

ods can also be used to obtain the WCET (section 4.1). For

each program, the experimental method is as follows:

1. Compile the program for the Alpha ISA, then ex-

ecute it using IIO to obtain a full execution trace, listing

every instruction that was executed.

2. Analyze the full trace to (1) obtain the CFG (by de-

tecting basic block boundaries), then (2) use edge execu-

tion frequencies to add static predictions at each condi-

tional branch, and finally (3) convert the CFG to a TCFG

by forming traces around the static branch predictions.

This is a way of building a TCFG without performing

WCET analysis. Regardless of the method used, traces

of length ≤ L are formed at every reachable basic block

using the path described by static branch predictions.

3. Run the program on O3+VTC, obtaining (1) a clock

cycle count, (2) a trace side exit count, and (3) a trace en-

trance count. The counting process is set up to disregard

program initialization and exit code.

This method was repeated for each benchmark program

with various values of L. Table 3 shows the execution
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Figure 7. Proportion of O3+VTC execution time spent in paths that break-even versus IIO.
Small programs (less than 1000 clock cycles on IIO) are omitted.

times for IIO and O3+VTC with L ∈ {1, 10, 20}.

5.1 Results

Table 3 shows that (in most cases) O3+VTC achieves

better guaranteed performance than IIO where L is large.

When L is small, IIO is usually better. This is because

short traces force the VTC to resynchronize the CPU

more frequently and this reduces performance. However,

O3+VTC is not always better for any L. For bubble, IIO

has a higher guaranteed throughput even when L = 20.

Increasing L leads to greater guaranteed throughput with

diminishing returns.

Table 4 shows an example of the timing behavior of

traces in O3+VTC versus IIO. IIO executes traces as se-

quential code, so the IIO timings are identical to the tim-

ings for execution of the original basic blocks. There is no

cost for taking a side exit early so IIO timings are much

less than O3+VTC timings for early side exits. For later

side exits, O3+VTC is faster. In this table, the minimum

trace cost is 17. O3+VTC is faster than IIO provided that

exits 1, 2 and 3 are not used, since tiIIO > tiO3+VTC
for

i > 3. The break-even point, where O3+VTC overtakes

IIO, is 20 clock cycles.

5.2 Lowering Break Even Points

Three distinct issues combine to increase the break-

even point for a trace, and hence reduce the guaranteed

throughput of O3+VTC. These are addressed below:

1. L may be too small. Table 3 suggests that small val-

ues of L lead to longer execution times; this is because

many of the trace paths do not break-even for small L

(Figure 7). For example, less than 20% of the paths in

ns break-even when L = 4. In this situation, most paths

are actually taking longer on O3+VTC than they would on

IIO. This explains the long execution times for small L,

but something more interesting can also be observed in

Figure 7: increasing L doesn’t always lead to shorter ex-

ti ti ti ti ti ti

i O3+ IIO i O3+ IIO i O3+ IIO

VTC VTC VTC

1 17 6 8 24 48 15 31 90

2 18 12 9 25 54 16 32 96

3 19 18 10 26 60 17 32 102

4 20 24 11 27 66 18 32 108

5 21 30 12 28 72 19 33 114

6 22 36 13 29 78 0 32 114

7 23 42 14 30 84

Table 4. Path execution times for the
same code on O3+VTC and IIO. (This trace
is an unrolled loop in ndes.)

ecution times. The break-even proportion for ns actually

decreases twice for L between 10 and 14. For some paths,

it is better to pick a local small value of L, which sug-

gests that search will be needed to find the best length for

each virtual trace in order to optimize the WCET. (This

effect exists because L controls the degree of speculation.

Setting L to a smaller value forces a more conservative

strategy, which might reduce ILP, but might also reduce

the execution time because fewer operations would be ex-

ecuted. This is accommodated by the VTC because virtual

traces can have any length up to L.)

2. Traces may not accurately represent execution paths.

When execution does not follow the main path of a trace,

a side exit is taken. These exits are particularly costly be-

cause the operation scheduler speculates past them on the

VTC’s instruction. However, the number of taken side ex-

its for each program is independent of L. (Traces only

have one main path, so there is no way to avoid taking a

side exit by increasing the trace length.) One reason for

bubble’s poor throughput in Table 3 is the unpredictable
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conditional branch in the inner loop: it is common for

traces to end at the first or second side exit, so fewer of the

executed paths break-even. One way to avoid this problem

is to use predicated execution in place of branches. This

could be used to convert the body of a loop into single-

path code [22], which is executed extremely efficiently by

traces. Another would be to locally reduce L to force more

conservative speculation as required.

3. Dynamic scheduler restrictions may reduce guaran-

teed throughput. The O3+VTC CPU includes many restric-

tions to make the operation scheduler predictable (section

4). To identify the restrictions having the greatest effect

on the throughput, a second experiment was carried out in

which the restrictions were disabled in turn. Table 5 lists

the CPU variants used. Removing restrictions usually led

to improved throughput (and variable t(Pe,i) values). Fig-

ure 8 shows the distribution of execution times as a result

of relaxation. Based on Figure 8, it is observed that the

execution time is increased by the following restrictions,

in descending order of importance:

3.1. No dynamic memory forwarding (patch P4, CPU

O3+VTC-SYNC-NF). Of all the restrictions, this has the

biggest effect on throughput. It prevents information be-

ing moved quickly between store and load operations that

use the same address. It causes a throughput reduction

of up to 2.7×, with a mean of 1.55× observed across all

benchmarks. Unfortunately, forwarding cannot be applied

predictably within the WCET model for traces as it is data-

dependent: an example of a situation in which speculative

forwarding fails destructively is seen in ns, where the pre-

dictable O3+VTC is 8% faster than O3+VTC-SYNC-NF.

3.2. Static memory disambiguation (patch P3, CPU

O3+VTC-SD). This causes a mean throughput reduction

of 1.31× across all benchmarks, with the most signifi-

cant effects on programs that make heavy use of RAM

(e.g. bubble, compress, fdct). In most cases, programs

O3+VTC-SYNC (Patch P1 omitted)

O3+VTC minus the requirement to resynchronize the

pipeline after each trace.

O3+VTC-SYNC-IOB (Patch P2 omitted)

O3+VTC-SYNC minus in-order execution of branches.

O3+VTC-SYNC-SD (Patch P3 omitted)

O3+VTC-SYNC minus enforcement of static memory dis-

ambiguation rules.

O3+VTC-SYNC-NF (Patch P4 omitted)

O3+VTC-SYNC with support for dynamic memory for-

warding.

Table 5. Additional CPUs tested for Fig-
ure 8: all of these impose fewer restric-
tions than O3+VTC.

that benefit from dynamic forwarding also benefit from dy-

namic memory disambiguation to a lesser extent.

3.3. Resynchronization (patch P1, CPU O3+VTC-

SYNC). Resynchronizing the pipeline after each trace

causes a mean throughput reduction of 1.17× across all

benchmarks. Resynchronization is a very significant ef-

fect for every program when L is small (Figure 7) but it is

dwarfed by memory effects for large L.

3.4. In-order branch resolution (patch P2, CPU

O3+VTC-SYNC-IOB). This restriction has no significant ef-

fect for most programs (Figure 8), but it does cause loss

of throughput for programs with large numbers of unpre-

dictable branches, e.g. bubble.

To summarize, memory accesses are the most signifi-

cant drain on throughput from the VTC design in addition

to the effects from a possibly suboptimal selection of L

and the problem of early side exits being used frequently.

Therefore, efforts to improve the VTC should aim to re-

duce the overhead of memory accesses. Any data depen-

dent event (e.g. a conditional branch) can be modeled as

an explicit branch for WCET analysis, but this technique

is unlikely to scale as a model of forwarding or memory

disambiguation due to the number of possible execution

paths, i.e. O(2n) after n load operations that might take

advantage of forwarding. Complexity is reduced by short-

ening traces, but that costs performance due to resynchro-

nization (contrast L = 1 and L = 20 in Table 3). The

most workable solution might be to mark some loads as

guaranteed forwarded in the VTR if it was certain that for-

warding would take place, or guaranteed not forwarded

if two memory operations could never share an address,

and hence disambiguation was known to be unnecessary.

If this was applied to even a subset of loads, guaranteed

throughput would improve.

5.3 Overall Comparison

O3+VTC can be compared directly against O3. Across

all of the programs used for Figure 8, O3 executes code

1.9× faster than O3+VTC on average. This is the conse-



quence of all of the restrictions added together: the worst

example is bubble, 3.6× slower on O3+VTC. However,

throughput on O3+VTC is improved when compared to IIO.

The results provide part of the basis for an eventual sili-

con implementation of the VTC by indicating the benefits

and costs that can be expected. Minor modifications to the

memory hierarchy of the CPU will be required to provide

predictable memory accesses for a hardware implementa-

tion (e.g. using scratchpads or locked caches). All such

implementation details are the subject of future work.

6 Related Work

The most similar work to this paper is by Mohan and

Müller [19], who describe CheckerMode, a CPU modifica-

tion which enables execution paths to be timed on a com-

plex CPU architecture. The purpose of the work is similar:

make a WCET model using measurements from the CPU.

The authors also use structures that are similar to traces

as their unit of WCET analysis, enabling them to account

for speculative and out-of-order execution. However, there

is a crucial difference between their work and this paper.

Specifically, this paper uses traces to constrain and control

the operation of the CPU, as well as using them for mea-

surement. In contrast, Mohan’s technique only uses them

for measurement. It relies on being able to save and re-

store the CPU state, which could be loaded and unloaded

from many CPUs through the debugging interface. It uses

the state to reproduce execution scenarios for each path,

obtaining execution time measurements which are added

to the program’s control flow graph. Mohan’s technique

does not affect the CPU’s runtime operation, so it might be

possible for timing anomalies [16] to occur between paths.

This is partly accounted for by draining the pipeline dur-

ing measurement, but it is not possible to be certain that

this will eliminate all timing anomalies if CPU resources

are being allocated dynamically [27]. Timing anomalies

cannot occur between traces with a VTC.

The idea of using execution measurements obtained

from a real CPU rather than a model is also explored in

the virtual simple architecture (VISA) [1]. In VISA, an

out-of-order CPU is allowed to run a program directly, but

if block execution time measurements drop below a pre-

dicted worst case, the CPU is automatically switched into

in-order execution (like IIO). This stops any timing anoma-

lies and guarantees the predicted WCET. The flaw in VISA

is that real-time programs always effectively execute in-

order for the purposes of schedulability analysis [23] since

the WCET must be used. This limit could be attacked by

using a VTC to implement the simple mode rather than

in-order execution. It could also be reduced by allowing

out-of-order execution but constraining it to single basic

blocks [25], which is like the VTC approach with L = 1.

The concept of a CPU instruction set that specifies in-

formation about timing also appears in work related to pre-

cision timed (PRET) machines [11], which must include

both predictable CPUs and memory subsystems. Suitable

memory systems include scratchpads, which are small

memories integrated into a CPU [2]. Scratchpads can be

used as highly predictable cache replacements [3], and

many locked caches can be used in the same way. The

issue is that instructions and data objects must be allo-

cated scratchpad space: this may be carried out to min-

imize the WCET [21] or to reduce average energy con-

sumption. Scratchpad allocations can be changed dynam-

ically, so some algorithms attempt to partition the instruc-

tions within a program into distinct allocation regions [20].

Adding trace information to a scratchpad is one way to re-

duce the WCET further: scratchpad allocation algorithms

have also been applied to trace scratchpads (storing mi-

croinstructions) [30]. But allocating data to a scratch-

pad is not an easy problem because common programming

paradigms permit programs to access any data in memory

at any time, and such random access is not easy to accom-

modate in a scratchpad. This has led some researchers to

propose a migration to programming languages that force

data accesses to take a more predictable form [3].

This work is also related to measurement-based WCET

analysis. An execution time measurement is guaranteed

to equal the WCET if the program is single-path, as ad-

vocated by Puschner [22]. Provided that loop bounds

are known, any conditional branch can be if-converted by

adding predicates to the operations that follow it. So any

program that could be WCET analyzed can also be con-

verted to a single-path form. However, there is a perfor-

mance reduction due to the need to fetch and decode all

of the instructions in an if statement (including the not

taken branch) and a predictable memory subsystem is as-

sumed. Bernat et al. [5] describe a way to transform statis-

tics sampled from a CPU running a conventional (multi-

path) program into a probabilistic model for that program’s

WCET. It deals with the timing noise problem (section 3)

by trying to sample as many execution scenarios as possi-

ble; in contrast, the VTC approach eliminates timing noise

but requires CPU modifications. Betts and Bernat [6] use

an instrumentation point graph for WCET analysis. In-

strumentation points are inserted when measurements are

sampled. They divide the program’s CFG into a TCFG-

like arrangement where the paths between points are anal-

ogous to traces. The work has been criticized as it has

the potential to produce an unsafe WCET estimate, but the

probability of safety can be computed, and it can applied

to any CPU without modifications.

7 Conclusion

This paper has discussed and evaluated the virtual trace

controller (VTC): an architectural mechanism for WCET

analysis and reduction. Previous work [30] indicates that

traces enable the WCET to be calculated exactly (i.e. with

no pessimism). This paper has shown that a CPU can

be modeled precisely using measurements alone (section

4.1). The O3+VTC simulated model has demonstrated that

(given sufficient trace length L) the guaranteed through-



put exceeds that of an idealized in-order CPU for most

programs (Table 3). Further investigation reveals that it

is useful to search for the best length l ≤ L for each

virtual trace, in order to balance the main path execution

time against the costs of side exits (Figure 7). Finally, ex-

periments with alternative CPU configurations show that

memory restrictions have the greatest effect on reducing

throughput (Figure 8).

The results show that virtual traces are viable, and that

the approach of constraining a complex CPU does work.

The WCET was reduced by O3+VTC versus an idealized

in-order CPU in many cases. But the results assume that

the memory subsystem is predictable, i.e. that data and in-

structions can be allocated to scratchpad, and they show

that it is important to know whether memory items could

ever share an address or be forwarded. Together, these

factors motivate the study of the wider research issue of

writing code with known data access characteristics. Un-

less the CPU and WCET analysis model can be provided

with more information about data accesses, the problems

of data scratchpad allocation, predictable memory disam-

biguation and predictable memory forwarding can only be

solved using a pessimistic strategy as in this paper.
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