
Predictable Out-of-order
Execution Using Virtual Traces

Jack Whitham and Neil Audsley

December 3rd 2008

http://www.jwhitham.org.uk/c/vt.html

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 1 / 27

http://www.jwhitham.org.uk/c/vt.html

Topics in this talk

1 General issues with state-of-the-art worst case execution time
(WCET) analysis.

2 Problem: design a CPU to reduce the WCET of a task.

3 Traces; a solution.

4 Virtual traces; a further improvement.

5 Experiments, results, observations.

6 Data scratchpads; a problem.

7 Conclusion.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 2 / 27

State-of-the-art WCET analysis

Requirement: find an upper bound on the execution time of a task: C ,
the WCET.

T=0 T=WCET

Task

Solution:

Model the functional properties of the code.

Model interactions between code and CPU hardware features.

→ This is the focus of my talk; examples include:

cache modeling
e.g. determine how often a load operation X “hits”
pipeline modeling
e.g. determine the worst-case state of the pipeline at point Y

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 3 / 27

State-of-the-art WCET analysis

Requirement: find an upper bound on the execution time of a task: C ,
the WCET.

T=0 T=WCET

Task

Solution:

Model the functional properties of the code.

Model interactions between code and CPU hardware features.

→ This is the focus of my talk; examples include:

cache modeling
e.g. determine how often a load operation X “hits”
pipeline modeling
e.g. determine the worst-case state of the pipeline at point Y

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 3 / 27

State-of-the-art WCET analysis

Requirement: find an upper bound on the execution time of a task: C ,
the WCET.

T=0 T=WCET

Task

Solution:

Model the functional properties of the code.

Model interactions between code and CPU hardware features.
→ This is the focus of my talk; examples include:

cache modeling
e.g. determine how often a load operation X “hits”

pipeline modeling
e.g. determine the worst-case state of the pipeline at point Y

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 3 / 27

State-of-the-art WCET analysis

Requirement: find an upper bound on the execution time of a task: C ,
the WCET.

T=0 T=WCET

Task

Solution:

Model the functional properties of the code.

Model interactions between code and CPU hardware features.
→ This is the focus of my talk; examples include:

cache modeling
e.g. determine how often a load operation X “hits”
pipeline modeling
e.g. determine the worst-case state of the pipeline at point Y

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 3 / 27

State-of-the-art WCET analysis

For complex CPUs, there are (at least) three problems:

Any CPU feature can be modeled in isolation, but since the features
interact, this is insufficient to capture worst-case behavior.

CPU manufacturers cannot usually provide exact specifications for
their CPUs, but highly accurate data is required to make the models.

The timing anomaly problem makes it impossible to determine which
hardware state leads to a greater execution time.

Timing anomaly: A locally smaller WCET may lead to a
globally greater WCET.

Solutions do exist for all of these problems, but they (1) raise the
engineering cost and/or (2) increase the WCET.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 4 / 27

State-of-the-art WCET analysis

For complex CPUs, there are (at least) three problems:

Any CPU feature can be modeled in isolation, but since the features
interact, this is insufficient to capture worst-case behavior.

CPU manufacturers cannot usually provide exact specifications for
their CPUs, but highly accurate data is required to make the models.

The timing anomaly problem makes it impossible to determine which
hardware state leads to a greater execution time.

Timing anomaly: A locally smaller WCET may lead to a
globally greater WCET.

Solutions do exist for all of these problems, but they (1) raise the
engineering cost and/or (2) increase the WCET.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 4 / 27

State-of-the-art WCET analysis

For complex CPUs, there are (at least) three problems:

Any CPU feature can be modeled in isolation, but since the features
interact, this is insufficient to capture worst-case behavior.

CPU manufacturers cannot usually provide exact specifications for
their CPUs, but highly accurate data is required to make the models.

The timing anomaly problem makes it impossible to determine which
hardware state leads to a greater execution time.

Timing anomaly: A locally smaller WCET may lead to a
globally greater WCET.

Solutions do exist for all of these problems, but they (1) raise the
engineering cost and/or (2) increase the WCET.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 4 / 27

State-of-the-art WCET analysis

For complex CPUs, there are (at least) three problems:

Any CPU feature can be modeled in isolation, but since the features
interact, this is insufficient to capture worst-case behavior.

CPU manufacturers cannot usually provide exact specifications for
their CPUs, but highly accurate data is required to make the models.

The timing anomaly problem makes it impossible to determine which
hardware state leads to a greater execution time.

Timing anomaly: A locally smaller WCET may lead to a
globally greater WCET.

Solutions do exist for all of these problems, but they (1) raise the
engineering cost and/or (2) increase the WCET.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 4 / 27

State-of-the-art WCET analysis

For complex CPUs, there are (at least) three problems:

Any CPU feature can be modeled in isolation, but since the features
interact, this is insufficient to capture worst-case behavior.

CPU manufacturers cannot usually provide exact specifications for
their CPUs, but highly accurate data is required to make the models.

The timing anomaly problem makes it impossible to determine which
hardware state leads to a greater execution time.

Timing anomaly: A locally smaller WCET may lead to a
globally greater WCET.

Solutions do exist for all of these problems, but they (1) raise the
engineering cost and/or (2) increase the WCET.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 4 / 27

A new sort of solution

Suppose we can replace the CPU with a new (or updated) design, aiming
to (1) support WCET analysis, and (2) allow the WCET to be reduced.

How could WCET analysis be supported?

Allow the CPU behavior to be safely captured by measurement.

Not usually possible in current CPUs, since there are too many factors
affecting timing, and the CPU can’t be forced into a known state.

Constrain/isolate some parts of the design to simplify modeling by
reducing possible interactions.

How could the WCET be reduced?

Accommodate speculative and superscalar out-of-order operation so
that throughput can be increased versus a simple CPU.

Reduce pessimism in the WCET model.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 5 / 27

A new sort of solution

Suppose we can replace the CPU with a new (or updated) design, aiming
to (1) support WCET analysis, and (2) allow the WCET to be reduced.

How could WCET analysis be supported?

Allow the CPU behavior to be safely captured by measurement.

Not usually possible in current CPUs, since there are too many factors
affecting timing, and the CPU can’t be forced into a known state.

Constrain/isolate some parts of the design to simplify modeling by
reducing possible interactions.

How could the WCET be reduced?

Accommodate speculative and superscalar out-of-order operation so
that throughput can be increased versus a simple CPU.

Reduce pessimism in the WCET model.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 5 / 27

A new sort of solution

Suppose we can replace the CPU with a new (or updated) design, aiming
to (1) support WCET analysis, and (2) allow the WCET to be reduced.

How could WCET analysis be supported?

Allow the CPU behavior to be safely captured by measurement.
Not usually possible in current CPUs, since there are too many factors
affecting timing, and the CPU can’t be forced into a known state.

Constrain/isolate some parts of the design to simplify modeling by
reducing possible interactions.

How could the WCET be reduced?

Accommodate speculative and superscalar out-of-order operation so
that throughput can be increased versus a simple CPU.

Reduce pessimism in the WCET model.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 5 / 27

A new sort of solution

Suppose we can replace the CPU with a new (or updated) design, aiming
to (1) support WCET analysis, and (2) allow the WCET to be reduced.

How could WCET analysis be supported?

Allow the CPU behavior to be safely captured by measurement.
Not usually possible in current CPUs, since there are too many factors
affecting timing, and the CPU can’t be forced into a known state.

Constrain/isolate some parts of the design to simplify modeling by
reducing possible interactions.

How could the WCET be reduced?

Accommodate speculative and superscalar out-of-order operation so
that throughput can be increased versus a simple CPU.

Reduce pessimism in the WCET model.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 5 / 27

A new sort of solution

Suppose we can replace the CPU with a new (or updated) design, aiming
to (1) support WCET analysis, and (2) allow the WCET to be reduced.

How could WCET analysis be supported?

Allow the CPU behavior to be safely captured by measurement.
Not usually possible in current CPUs, since there are too many factors
affecting timing, and the CPU can’t be forced into a known state.

Constrain/isolate some parts of the design to simplify modeling by
reducing possible interactions.

How could the WCET be reduced?

Accommodate speculative and superscalar out-of-order operation so
that throughput can be increased versus a simple CPU.

Reduce pessimism in the WCET model.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 5 / 27

A new sort of solution

Suppose we can replace the CPU with a new (or updated) design, aiming
to (1) support WCET analysis, and (2) allow the WCET to be reduced.

How could WCET analysis be supported?

Allow the CPU behavior to be safely captured by measurement.
Not usually possible in current CPUs, since there are too many factors
affecting timing, and the CPU can’t be forced into a known state.

Constrain/isolate some parts of the design to simplify modeling by
reducing possible interactions.

How could the WCET be reduced?

Accommodate speculative and superscalar out-of-order operation so
that throughput can be increased versus a simple CPU.

Reduce pessimism in the WCET model.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 5 / 27

One possibility: a trace

A trace is a path through a program, chosen to reduce C, the
worst-case execution time.

BB4

BB5BB2

BB3BB1 BB6

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 6 / 27

One possibility: a trace

A trace is a path through a program, chosen to reduce C, the
worst-case execution time.

BB4

BB5BB2

BB3BB1 BB6

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 7 / 27

How does this help?

If a program is composed of traces, analysis can ignore how a computation
is performed by the CPU, and instead consider only one thing:

The length of time taken for each path through each trace.

If a trace contains n branches, then there are n + 1 paths through it.

⇒ There are exactly n + 1 ways that it could ever be executed.
⇒ There are exactly n + 1 sequences of pipeline states.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 8 / 27

How does this help?

If a program is composed of traces, analysis can ignore how a computation
is performed by the CPU, and instead consider only one thing:

The length of time taken for each path through each trace.

If a trace contains n branches, then there are n + 1 paths through it.

⇒ There are exactly n + 1 ways that it could ever be executed.
⇒ There are exactly n + 1 sequences of pipeline states.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 8 / 27

How does this help?

If a program is composed of traces, analysis can ignore how a computation
is performed by the CPU, and instead consider only one thing:

The length of time taken for each path through each trace.

If a trace contains n branches, then there are n + 1 paths through it.
⇒ There are exactly n + 1 ways that it could ever be executed.

⇒ There are exactly n + 1 sequences of pipeline states.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 8 / 27

How does this help?

If a program is composed of traces, analysis can ignore how a computation
is performed by the CPU, and instead consider only one thing:

The length of time taken for each path through each trace.

If a trace contains n branches, then there are n + 1 paths through it.
⇒ There are exactly n + 1 ways that it could ever be executed.
⇒ There are exactly n + 1 sequences of pipeline states.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 8 / 27

How does this help?

The intermediate pipeline states are irrelevant to analysis.

(pipeline

state known)
(pipeline

state known)

(pipeline

state known)

trace entrance

trace exit

trace

trace exit

BB4

BB5BB2

BB3BB1 BB6

internal behavior

"don’t care"

The trace begins and ends in a known pipeline state.

The total time for each path is exactly known (it can be measured).

The result: speculation and superscalar out-of-order execution don’t
have to be modeled!

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 9 / 27

How does this help?

The intermediate pipeline states are irrelevant to analysis.

(pipeline

state known)
(pipeline

state known)

(pipeline

state known)

trace entrance

trace exit

trace

trace exit

BB4

BB5BB2

BB3BB1 BB6

internal behavior

"don’t care"

The trace begins and ends in a known pipeline state.

The total time for each path is exactly known (it can be measured).

The result: speculation and superscalar out-of-order execution don’t
have to be modeled!

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 9 / 27

How does this help?

The intermediate pipeline states are irrelevant to analysis.

(pipeline

state known)
(pipeline

state known)

(pipeline

state known)

trace entrance

trace exit

trace

trace exit

BB4

BB5BB2

BB3BB1 BB6

internal behavior

"don’t care"

The trace begins and ends in a known pipeline state.

The total time for each path is exactly known (it can be measured).

The result: speculation and superscalar out-of-order execution don’t
have to be modeled!

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 9 / 27

How does this help?

The intermediate pipeline states are irrelevant to analysis.

(pipeline

state known)
(pipeline

state known)

(pipeline

state known)

trace entrance

trace exit

trace

trace exit

BB4

BB5BB2

BB3BB1 BB6

internal behavior

"don’t care"

The trace begins and ends in a known pipeline state.

The total time for each path is exactly known (it can be measured).

The result: speculation and superscalar out-of-order execution don’t
have to be modeled!

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 9 / 27

How does this help?

The intermediate pipeline states are irrelevant to analysis.

(pipeline

state known)
(pipeline

state known)

(pipeline

state known)

trace entrance

trace exit

trace

trace exit

BB4

BB5BB2

BB3BB1 BB6

internal behavior

"don’t care"

The trace begins and ends in a known pipeline state.

The total time for each path is exactly known (it can be measured).

The result: speculation and superscalar out-of-order execution don’t
have to be modeled!

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 9 / 27

Static branch prediction

BB4

BB5BB2

BB3BB1 BB6

Contrast with static branch prediction. With a virtual trace, the main path
has a well-defined end point, so the number of possible pipeline states is
bounded. Static branch prediction omits this important restriction.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 10 / 27

Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

1 Take a program in machine code form;

2 Apply WCET analysis to find the WCEP;

3 Convert subsequences of the WCEP into traces implemented by
microcode. These are explicitly parallel and optimize execution for
one path.

exit returns to

machine code

trace entrance

trace exit trace exit

trace implemented
using microcode

trace

BB4

BB5BB2

BB3BB1 BB6 BB1,3,6

BB4

BB5BB2

(a) (b)

 microcode

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 11 / 27

Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

1 Take a program in machine code form;

2 Apply WCET analysis to find the WCEP;

3 Convert subsequences of the WCEP into traces implemented by
microcode. These are explicitly parallel and optimize execution for
one path.

exit returns to

machine code

trace entrance

trace exit trace exit

trace implemented
using microcode

trace

BB4

BB5BB2

BB3BB1 BB6 BB1,3,6

BB4

BB5BB2

(a) (b)

 microcode

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 11 / 27

Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

1 Take a program in machine code form;

2 Apply WCET analysis to find the WCEP;

3 Convert subsequences of the WCEP into traces implemented by
microcode. These are explicitly parallel and optimize execution for
one path.

exit returns to

machine code

trace entrance

trace exit trace exit

trace implemented
using microcode

trace

BB4

BB5BB2

BB3BB1 BB6 BB1,3,6

BB4

BB5BB2

(a) (b)

 microcode

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 11 / 27

Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

1 Take a program in machine code form;

2 Apply WCET analysis to find the WCEP;

3 Convert subsequences of the WCEP into traces implemented by
microcode. These are explicitly parallel and optimize execution for
one path.

exit returns to

machine code

trace entrance

trace exit trace exit

trace implemented
using microcode

trace

BB4

BB5BB2

BB3BB1 BB6 BB1,3,6

BB4

BB5BB2

(a) (b)

 microcode

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 11 / 27

Previous work

4. Allocate space in a trace scratchpad for microcode.
The microcode is used in place of the original machine code.

 bits per linew

C
li

n
es

m
a
x

CPU PIPELINE

D
E

C
O

D
E

..
.

E
X

E
C

U
T

E

MICRO OPS.

MACHINE CODE

ADDRESS

eT =
 5

e
C

unused space

space occupied by a trace

J. Whitham and N. Audsley, Using trace scratch-
pads to reduce execution times in predictable real-
time architectures, Proc. RTAS, 305–316, 2008.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 12 / 27

Virtual trace

A virtual trace is a compact encoding, specifying the execution path that
should be assumed by the CPU.

Virtual traces are equivalent to traces within the WCET analysis model,
but some practical problems are solved:

the need for a custom CPU with a writable microcode store,

the need for a CPU-specific compiler to generate microcode,

the memory space requirements of microcode.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 13 / 27

Virtual trace

A virtual trace is a compact encoding, specifying the execution path that
should be assumed by the CPU.

Virtual traces are equivalent to traces within the WCET analysis model,
but some practical problems are solved:

the need for a custom CPU with a writable microcode store,

the need for a CPU-specific compiler to generate microcode,

the memory space requirements of microcode.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 13 / 27

Virtual trace

A virtual trace is a compact encoding, specifying the execution path that
should be assumed by the CPU.

Virtual traces are equivalent to traces within the WCET analysis model,
but some practical problems are solved:

the need for a custom CPU with a writable microcode store,

the need for a CPU-specific compiler to generate microcode,

the memory space requirements of microcode.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 13 / 27

Virtual trace

A virtual trace is a compact encoding, specifying the execution path that
should be assumed by the CPU.

Virtual traces are equivalent to traces within the WCET analysis model,
but some practical problems are solved:

the need for a custom CPU with a writable microcode store,

the need for a CPU-specific compiler to generate microcode,

the memory space requirements of microcode.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 13 / 27

Virtual trace

The virtual trace controls a conventional but constrained dynamic CPU
scheduler.

We regard the CPU dynamic scheduler as a decoder:

machine code + virtual trace → “microcode”

Virtual in the sense that the microcode is generated dynamically - we
know what the scheduler will do, but we don’t explicitly encode it.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 14 / 27

Virtual trace

The virtual trace controls a conventional but constrained dynamic CPU
scheduler.

We regard the CPU dynamic scheduler as a decoder:

machine code + virtual trace → “microcode”

Virtual in the sense that the microcode is generated dynamically - we
know what the scheduler will do, but we don’t explicitly encode it.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 14 / 27

Virtual trace

The virtual trace controls a conventional but constrained dynamic CPU
scheduler.

We regard the CPU dynamic scheduler as a decoder:

machine code + virtual trace → “microcode”

Virtual in the sense that the microcode is generated dynamically - we
know what the scheduler will do, but we don’t explicitly encode it.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 14 / 27

This helps!

How are the issues of WCET analysis addressed?

1 Problem: Pipeline components can interact.

Solution: Constrain execution to a known state at the beginning and
end of each trace.
The effects of all interactions are captured when the virtual trace
execution time is measured.

2 Problem: CPUs are hard to model.

Solution: Don’t try to model the CPU.
Instead, constrain CPU behavior so that it can be measured safely.

3 Problem: Timing anomalies can occur in complex CPUs.

Solution: Because of resynchronization, timing anomalies can’t
propagate from one trace to another.

4 Problem: How can the WCET be reduced?

Solution: Allow speculative and out-of-order execution within a trace.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 15 / 27

This helps!

How are the issues of WCET analysis addressed?

1 Problem: Pipeline components can interact.
Solution: Constrain execution to a known state at the beginning and
end of each trace.
The effects of all interactions are captured when the virtual trace
execution time is measured.

2 Problem: CPUs are hard to model.

Solution: Don’t try to model the CPU.
Instead, constrain CPU behavior so that it can be measured safely.

3 Problem: Timing anomalies can occur in complex CPUs.

Solution: Because of resynchronization, timing anomalies can’t
propagate from one trace to another.

4 Problem: How can the WCET be reduced?

Solution: Allow speculative and out-of-order execution within a trace.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 15 / 27

This helps!

How are the issues of WCET analysis addressed?

1 Problem: Pipeline components can interact.
Solution: Constrain execution to a known state at the beginning and
end of each trace.
The effects of all interactions are captured when the virtual trace
execution time is measured.

2 Problem: CPUs are hard to model.

Solution: Don’t try to model the CPU.
Instead, constrain CPU behavior so that it can be measured safely.

3 Problem: Timing anomalies can occur in complex CPUs.

Solution: Because of resynchronization, timing anomalies can’t
propagate from one trace to another.

4 Problem: How can the WCET be reduced?

Solution: Allow speculative and out-of-order execution within a trace.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 15 / 27

This helps!

How are the issues of WCET analysis addressed?

1 Problem: Pipeline components can interact.
Solution: Constrain execution to a known state at the beginning and
end of each trace.
The effects of all interactions are captured when the virtual trace
execution time is measured.

2 Problem: CPUs are hard to model.
Solution: Don’t try to model the CPU.
Instead, constrain CPU behavior so that it can be measured safely.

3 Problem: Timing anomalies can occur in complex CPUs.

Solution: Because of resynchronization, timing anomalies can’t
propagate from one trace to another.

4 Problem: How can the WCET be reduced?

Solution: Allow speculative and out-of-order execution within a trace.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 15 / 27

This helps!

How are the issues of WCET analysis addressed?

1 Problem: Pipeline components can interact.
Solution: Constrain execution to a known state at the beginning and
end of each trace.
The effects of all interactions are captured when the virtual trace
execution time is measured.

2 Problem: CPUs are hard to model.
Solution: Don’t try to model the CPU.
Instead, constrain CPU behavior so that it can be measured safely.

3 Problem: Timing anomalies can occur in complex CPUs.

Solution: Because of resynchronization, timing anomalies can’t
propagate from one trace to another.

4 Problem: How can the WCET be reduced?

Solution: Allow speculative and out-of-order execution within a trace.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 15 / 27

This helps!

How are the issues of WCET analysis addressed?

1 Problem: Pipeline components can interact.
Solution: Constrain execution to a known state at the beginning and
end of each trace.
The effects of all interactions are captured when the virtual trace
execution time is measured.

2 Problem: CPUs are hard to model.
Solution: Don’t try to model the CPU.
Instead, constrain CPU behavior so that it can be measured safely.

3 Problem: Timing anomalies can occur in complex CPUs.
Solution: Because of resynchronization, timing anomalies can’t
propagate from one trace to another.

4 Problem: How can the WCET be reduced?

Solution: Allow speculative and out-of-order execution within a trace.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 15 / 27

This helps!

How are the issues of WCET analysis addressed?

1 Problem: Pipeline components can interact.
Solution: Constrain execution to a known state at the beginning and
end of each trace.
The effects of all interactions are captured when the virtual trace
execution time is measured.

2 Problem: CPUs are hard to model.
Solution: Don’t try to model the CPU.
Instead, constrain CPU behavior so that it can be measured safely.

3 Problem: Timing anomalies can occur in complex CPUs.
Solution: Because of resynchronization, timing anomalies can’t
propagate from one trace to another.

4 Problem: How can the WCET be reduced?

Solution: Allow speculative and out-of-order execution within a trace.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 15 / 27

This helps!

How are the issues of WCET analysis addressed?

1 Problem: Pipeline components can interact.
Solution: Constrain execution to a known state at the beginning and
end of each trace.
The effects of all interactions are captured when the virtual trace
execution time is measured.

2 Problem: CPUs are hard to model.
Solution: Don’t try to model the CPU.
Instead, constrain CPU behavior so that it can be measured safely.

3 Problem: Timing anomalies can occur in complex CPUs.
Solution: Because of resynchronization, timing anomalies can’t
propagate from one trace to another.

4 Problem: How can the WCET be reduced?
Solution: Allow speculative and out-of-order execution within a trace.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 15 / 27

Statement, research questions

If a program runs using virtual traces,
and program functionality can be modeled,
then an exact bound for the WCET C can be found.

Q1: Given a task T , is C lower if
(a) a simple in-order CPU is used (minimum one CPI), or
(b) a virtual trace CPU is used.

Q2: Which of the constraints needed to implement virtual traces have
the greatest effect on execution time?

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 16 / 27

Statement, research questions

If a program runs using virtual traces,
and program functionality can be modeled,
then an exact bound for the WCET C can be found.

Q1: Given a task T , is C lower if
(a) a simple in-order CPU is used (minimum one CPI), or
(b) a virtual trace CPU is used.

Q2: Which of the constraints needed to implement virtual traces have
the greatest effect on execution time?

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 16 / 27

Statement, research questions

If a program runs using virtual traces,
and program functionality can be modeled,
then an exact bound for the WCET C can be found.

Q1: Given a task T , is C lower if
(a) a simple in-order CPU is used (minimum one CPI), or
(b) a virtual trace CPU is used.

Q2: Which of the constraints needed to implement virtual traces have
the greatest effect on execution time?

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 16 / 27

In this work

Virtual traces are implemented using the M5 O3 CPU simulator.

M5 - Architecture simulator from UMich.
O3 - Out Of Order CPU.

Memory subsystem is assumed to be deterministic: perfect caches.

The two research questions (comparison with in-order CPU, effects of
constraints) are investigated.

Virtual traces are assigned to a single-path program using profiling.

In reality, WCET analysis would be used.

Chicken and egg problem!

J. Whitham and N. Audsley, Forming Virtual Traces
for WCET Analysis and Reduction, Proc. RTCSA,
377–386, 2008.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 17 / 27

In this work

Virtual traces are implemented using the M5 O3 CPU simulator.
M5 - Architecture simulator from UMich.
O3 - Out Of Order CPU.

Memory subsystem is assumed to be deterministic: perfect caches.

The two research questions (comparison with in-order CPU, effects of
constraints) are investigated.

Virtual traces are assigned to a single-path program using profiling.

In reality, WCET analysis would be used.

Chicken and egg problem!

J. Whitham and N. Audsley, Forming Virtual Traces
for WCET Analysis and Reduction, Proc. RTCSA,
377–386, 2008.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 17 / 27

In this work

Virtual traces are implemented using the M5 O3 CPU simulator.
M5 - Architecture simulator from UMich.
O3 - Out Of Order CPU.

Memory subsystem is assumed to be deterministic: perfect caches.

The two research questions (comparison with in-order CPU, effects of
constraints) are investigated.

Virtual traces are assigned to a single-path program using profiling.

In reality, WCET analysis would be used.

Chicken and egg problem!

J. Whitham and N. Audsley, Forming Virtual Traces
for WCET Analysis and Reduction, Proc. RTCSA,
377–386, 2008.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 17 / 27

In this work

Virtual traces are implemented using the M5 O3 CPU simulator.
M5 - Architecture simulator from UMich.
O3 - Out Of Order CPU.

Memory subsystem is assumed to be deterministic: perfect caches.

The two research questions (comparison with in-order CPU, effects of
constraints) are investigated.

Virtual traces are assigned to a single-path program using profiling.

In reality, WCET analysis would be used.

Chicken and egg problem!

J. Whitham and N. Audsley, Forming Virtual Traces
for WCET Analysis and Reduction, Proc. RTCSA,
377–386, 2008.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 17 / 27

In this work

Virtual traces are implemented using the M5 O3 CPU simulator.
M5 - Architecture simulator from UMich.
O3 - Out Of Order CPU.

Memory subsystem is assumed to be deterministic: perfect caches.

The two research questions (comparison with in-order CPU, effects of
constraints) are investigated.

Virtual traces are assigned to a single-path program using profiling.

In reality, WCET analysis would be used.

Chicken and egg problem!

J. Whitham and N. Audsley, Forming Virtual Traces
for WCET Analysis and Reduction, Proc. RTCSA,
377–386, 2008.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 17 / 27

In this work

Virtual traces are implemented using the M5 O3 CPU simulator.
M5 - Architecture simulator from UMich.
O3 - Out Of Order CPU.

Memory subsystem is assumed to be deterministic: perfect caches.

The two research questions (comparison with in-order CPU, effects of
constraints) are investigated.

Virtual traces are assigned to a single-path program using profiling.

In reality, WCET analysis would be used.
Chicken and egg problem!

J. Whitham and N. Audsley, Forming Virtual Traces
for WCET Analysis and Reduction, Proc. RTCSA,
377–386, 2008.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 17 / 27

How virtual traces are implemented

(1) Sources of timing noise in O3 are constrained or eliminated:

Memory Dependence
Misprediction Detected

Variable Duration
Instruction

Dynamic SchedulerCache Stall

Instructions

Instruction

Predictions

Data Cache Stall

Misprediction Detected

Exception Detected Execution unit

Load/store unit

Instruction interface

virtual trace

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 18 / 27

How virtual traces are implemented

(2) The virtual trace controller (VTC) generates branch predictions and
manages the flow of instructions into the pipeline:

I-cache modelled
VTC

Virtual trace Instructions

O3 CPU
pipelinePipeline status:

is_empty and
squash_notify

NT/T

Result: O3+VTC CPU: O3 with virtual trace extensions.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 19 / 27

Experiment 1

Q1: Given a task T , is C lower if
(a) a simple in-order CPU is used (minimum one CPI), or
(b) a virtual trace CPU is used.

A subset of the Mälardalen benchmarks were executed within the following
environments, measuring execution time:

IIO: Idealized in-order CPU.
Exactly one instruction executed every clock cycle.

O3+VTC: Virtual trace CPU with maximum trace length L ∈ [1, 20].

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 20 / 27

Results 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

fir
jfdctint
edn
fir
jfdctint
edn
ndes
ns
fdct
fibcall
expint
insertsort
cnt
janne
matmult
bs
crc
duff
compress
bubble

Trace length L

W
C

E
T

 r
e
d
u

ct
io

n
 O

3
+

V
T

C
/I

IO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

fir
jfdctint
edn
fir
jfdctint
edn
ndes
ns
fdct
cnt
matmult
crc
compress
bubble

Trace length L

W
C

E
T

 r
e
d
u

ct
io

n
 O

3
+

V
T

C
/I

IO

IIO O3+VTC

bs 92 79

bubble 5,286 8,454

cnt 3,580 2,786

compress 3,545 4,093

crc 21,096 21,082

duff 496 509

edn 97,001 43,227

expint 533 385

fdct 3,410 2,093

fibcall 44 26

fir 2,988 1,206

insertsort 887 676

janne 348 299

jfdctint 3,467 1,509

matmult 142,810 124,595

ndes 40,284 23,294

ns 2,852 1,691

0
.9

1 1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

2 2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

0

2

4

6

8

10

12

14

16

18
O3+VTC-SYNC-NF
O3+VTC-SYNC-SD
O3+VTC-SYNC-IOB
O3+VTC-SYNC

Throughput Increase

Fr
eq

u
en

cy

O3+VTC: Some WCET reduction
achieved for 14 of 17 cases, up to 2.5×.

But available WCET reductions are
highly dependent on program structure;
unpredictable branches are a problem. If-
conversion is a solution (localized single-
path programming).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

fir
jfdctint
edn
fir
jfdctint
edn
ndes
ns
fdct
fibcall
expint
insertsort
cnt
janne
matmult
bs
crc
duff
compress
bubble

Trace length L

W
C

E
T

 r
e
d
u

ct
io

n
 O

3
+

V
T

C
/I

IO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

fir
jfdctint
edn
fir
jfdctint
edn
ndes
ns
fdct
cnt
matmult
crc
compress
bubble

Trace length L

W
C

E
T

 r
e
d
u

ct
io

n
 O

3
+

V
T

C
/I

IO

IIO O3+VTC

bs 92 79

bubble 5,286 8,454

cnt 3,580 2,786

compress 3,545 4,093

crc 21,096 21,082

duff 496 509

edn 97,001 43,227

expint 533 385

fdct 3,410 2,093

fibcall 44 26

fir 2,988 1,206

insertsort 887 676

janne 348 299

jfdctint 3,467 1,509

matmult 142,810 124,595

ndes 40,284 23,294

ns 2,852 1,691

0
.9

1 1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

2 2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

0

2

4

6

8

10

12

14

16

18
O3+VTC-SYNC-NF
O3+VTC-SYNC-SD
O3+VTC-SYNC-IOB
O3+VTC-SYNC

Throughput Increase

Fr
eq

u
en

cy

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 21 / 27

Results 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

fir
jfdctint
edn
fir
jfdctint
edn
ndes
ns
fdct
fibcall
expint
insertsort
cnt
janne
matmult
bs
crc
duff
compress
bubble

Trace length L

W
C

E
T

 r
e
d
u

ct
io

n
 O

3
+

V
T

C
/I

IO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

fir
jfdctint
edn
fir
jfdctint
edn
ndes
ns
fdct
cnt
matmult
crc
compress
bubble

Trace length L

W
C

E
T

 r
e
d
u

ct
io

n
 O

3
+

V
T

C
/I

IO

IIO O3+VTC

bs 92 79

bubble 5,286 8,454

cnt 3,580 2,786

compress 3,545 4,093

crc 21,096 21,082

duff 496 509

edn 97,001 43,227

expint 533 385

fdct 3,410 2,093

fibcall 44 26

fir 2,988 1,206

insertsort 887 676

janne 348 299

jfdctint 3,467 1,509

matmult 142,810 124,595

ndes 40,284 23,294

ns 2,852 1,691

0
.9

1 1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

2 2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

0

2

4

6

8

10

12

14

16

18
O3+VTC-SYNC-NF
O3+VTC-SYNC-SD
O3+VTC-SYNC-IOB
O3+VTC-SYNC

Throughput Increase

Fr
eq

u
en

cy

O3+VTC: Some WCET reduction
achieved for 14 of 17 cases, up to 2.5×.

But available WCET reductions are
highly dependent on program structure;
unpredictable branches are a problem. If-
conversion is a solution (localized single-
path programming).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

fir
jfdctint
edn
fir
jfdctint
edn
ndes
ns
fdct
fibcall
expint
insertsort
cnt
janne
matmult
bs
crc
duff
compress
bubble

Trace length L

W
C

E
T

 r
e
d
u

ct
io

n
 O

3
+

V
T

C
/I

IO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

fir
jfdctint
edn
fir
jfdctint
edn
ndes
ns
fdct
cnt
matmult
crc
compress
bubble

Trace length L

W
C

E
T

 r
e
d
u

ct
io

n
 O

3
+

V
T

C
/I

IO

IIO O3+VTC

bs 92 79

bubble 5,286 8,454

cnt 3,580 2,786

compress 3,545 4,093

crc 21,096 21,082

duff 496 509

edn 97,001 43,227

expint 533 385

fdct 3,410 2,093

fibcall 44 26

fir 2,988 1,206

insertsort 887 676

janne 348 299

jfdctint 3,467 1,509

matmult 142,810 124,595

ndes 40,284 23,294

ns 2,852 1,691

0
.9

1 1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

2 2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

0

2

4

6

8

10

12

14

16

18
O3+VTC-SYNC-NF
O3+VTC-SYNC-SD
O3+VTC-SYNC-IOB
O3+VTC-SYNC

Throughput Increase

Fr
eq

u
en

cy

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 21 / 27

Experiment 2

Q2: Which of the constraints needed to implement virtual traces
have the greatest effect on execution time?

A subset of the Mälardalen benchmarks were executed within the following
environments, measuring execution time. Each environment removes one
of the constraints of O3+VTC:

O3+VTC-SYNC: The pipeline is not resynchronized at trace end.

O3+VTC-SYNC-IOB: Branches may be executed out of order.

O3+VTC-SYNC-SD: Dynamic memory disambiguation is used.

O3+VTC-SYNC-NF: Dynamic memory forwarding is permitted.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 22 / 27

Results 2

Unpredictable branches are only one problem! CPU constraints
also increase C : O3+VTC is up to 3.6× slower than O3.

In terms of C , the most severe constraints are those preventing
dynamic memory disambiguation and forwarding.

If only we could predict
the addresses of loads
and stores!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

fir
jfdctint
edn
fir
jfdctint
edn
ndes
ns
fdct
fibcall
expint
insertsort
cnt
janne
matmult
bs
crc
duff
compress
bubble

Trace length L

W
C

E
T

 r
e
d
u

ct
io

n
 O

3
+

V
T

C
/I

IO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

fir
jfdctint
edn
fir
jfdctint
edn
ndes
ns
fdct
cnt
matmult
crc
compress
bubble

Trace length L

W
C

E
T

 r
e
d
u

ct
io

n
 O

3
+

V
T

C
/I

IO

IIO O3+VTC

bs 92 79

bubble 5,286 8,454

cnt 3,580 2,786

compress 3,545 4,093

crc 21,096 21,082

duff 496 509

edn 97,001 43,227

expint 533 385

fdct 3,410 2,093

fibcall 44 26

fir 2,988 1,206

insertsort 887 676

janne 348 299

jfdctint 3,467 1,509

matmult 142,810 124,595

ndes 40,284 23,294

ns 2,852 1,691

0
.9

1 1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

2 2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

0

2

4

6

8

10

12

14

16

18
O3+VTC-SYNC-NF
O3+VTC-SYNC-SD
O3+VTC-SYNC-IOB
O3+VTC-SYNC

Throughput Increase

Fr
eq

u
en

cy

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 23 / 27

Results 2

Unpredictable branches are only one problem! CPU constraints
also increase C : O3+VTC is up to 3.6× slower than O3.

In terms of C , the most severe constraints are those preventing
dynamic memory disambiguation and forwarding.

If only we could predict
the addresses of loads
and stores!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

fir
jfdctint
edn
fir
jfdctint
edn
ndes
ns
fdct
fibcall
expint
insertsort
cnt
janne
matmult
bs
crc
duff
compress
bubble

Trace length L

W
C

E
T

 r
e
d
u

ct
io

n
 O

3
+

V
T

C
/I

IO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

fir
jfdctint
edn
fir
jfdctint
edn
ndes
ns
fdct
cnt
matmult
crc
compress
bubble

Trace length L

W
C

E
T

 r
e
d
u

ct
io

n
 O

3
+

V
T

C
/I

IO

IIO O3+VTC

bs 92 79

bubble 5,286 8,454

cnt 3,580 2,786

compress 3,545 4,093

crc 21,096 21,082

duff 496 509

edn 97,001 43,227

expint 533 385

fdct 3,410 2,093

fibcall 44 26

fir 2,988 1,206

insertsort 887 676

janne 348 299

jfdctint 3,467 1,509

matmult 142,810 124,595

ndes 40,284 23,294

ns 2,852 1,691

0
.9

1 1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

2 2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

0

2

4

6

8

10

12

14

16

18
O3+VTC-SYNC-NF
O3+VTC-SYNC-SD
O3+VTC-SYNC-IOB
O3+VTC-SYNC

Throughput Increase

Fr
eq

u
en

cy

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 23 / 27

Results 2

Unpredictable branches are only one problem! CPU constraints
also increase C : O3+VTC is up to 3.6× slower than O3.

In terms of C , the most severe constraints are those preventing
dynamic memory disambiguation and forwarding.

If only we could predict
the addresses of loads
and stores!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

fir
jfdctint
edn
fir
jfdctint
edn
ndes
ns
fdct
fibcall
expint
insertsort
cnt
janne
matmult
bs
crc
duff
compress
bubble

Trace length L

W
C

E
T

 r
e
d
u

ct
io

n
 O

3
+

V
T

C
/I

IO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

fir
jfdctint
edn
fir
jfdctint
edn
ndes
ns
fdct
cnt
matmult
crc
compress
bubble

Trace length L

W
C

E
T

 r
e
d
u

ct
io

n
 O

3
+

V
T

C
/I

IO

IIO O3+VTC

bs 92 79

bubble 5,286 8,454

cnt 3,580 2,786

compress 3,545 4,093

crc 21,096 21,082

duff 496 509

edn 97,001 43,227

expint 533 385

fdct 3,410 2,093

fibcall 44 26

fir 2,988 1,206

insertsort 887 676

janne 348 299

jfdctint 3,467 1,509

matmult 142,810 124,595

ndes 40,284 23,294

ns 2,852 1,691

0
.9

1 1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

2 2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

0

2

4

6

8

10

12

14

16

18
O3+VTC-SYNC-NF
O3+VTC-SYNC-SD
O3+VTC-SYNC-IOB
O3+VTC-SYNC

Throughput Increase

Fr
eq

u
en

cy

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 23 / 27

Further Investigation

In fact, the memory addresses used for data accesses have an even more
significant effect on performance, because of the time taken to fetch data.

This work assumed a perfect data cache. A real data cache would be
a source of timing noise; this would be a severe problem. Every
hit/miss needs to be predicted in advance.

A scratchpad memory or locked cache would need to be used.
Automatic data scratchpad allocation is necessary but difficult.

Q1: Which variables should be stored in scratchpad? Which should be
stored in main memory?
Q2: How often should the partition be changed?

A hard problem for general C code:

Pointers can have almost any value.

Memory might be allocated dynamically.

The same problems affect data cache modeling.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 24 / 27

Further Investigation

In fact, the memory addresses used for data accesses have an even more
significant effect on performance, because of the time taken to fetch data.

This work assumed a perfect data cache. A real data cache would be
a source of timing noise; this would be a severe problem. Every
hit/miss needs to be predicted in advance.

A scratchpad memory or locked cache would need to be used.
Automatic data scratchpad allocation is necessary but difficult.

Q1: Which variables should be stored in scratchpad? Which should be
stored in main memory?
Q2: How often should the partition be changed?

A hard problem for general C code:

Pointers can have almost any value.

Memory might be allocated dynamically.

The same problems affect data cache modeling.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 24 / 27

Further Investigation

In fact, the memory addresses used for data accesses have an even more
significant effect on performance, because of the time taken to fetch data.

This work assumed a perfect data cache. A real data cache would be
a source of timing noise; this would be a severe problem. Every
hit/miss needs to be predicted in advance.

A scratchpad memory or locked cache would need to be used.
Automatic data scratchpad allocation is necessary but difficult.

Q1: Which variables should be stored in scratchpad? Which should be
stored in main memory?
Q2: How often should the partition be changed?

A hard problem for general C code:

Pointers can have almost any value.

Memory might be allocated dynamically.

The same problems affect data cache modeling.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 24 / 27

Further Investigation

In fact, the memory addresses used for data accesses have an even more
significant effect on performance, because of the time taken to fetch data.

This work assumed a perfect data cache. A real data cache would be
a source of timing noise; this would be a severe problem. Every
hit/miss needs to be predicted in advance.

A scratchpad memory or locked cache would need to be used.
Automatic data scratchpad allocation is necessary but difficult.

Q1: Which variables should be stored in scratchpad? Which should be
stored in main memory?

Q2: How often should the partition be changed?

A hard problem for general C code:

Pointers can have almost any value.

Memory might be allocated dynamically.

The same problems affect data cache modeling.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 24 / 27

Further Investigation

In fact, the memory addresses used for data accesses have an even more
significant effect on performance, because of the time taken to fetch data.

This work assumed a perfect data cache. A real data cache would be
a source of timing noise; this would be a severe problem. Every
hit/miss needs to be predicted in advance.

A scratchpad memory or locked cache would need to be used.
Automatic data scratchpad allocation is necessary but difficult.

Q1: Which variables should be stored in scratchpad? Which should be
stored in main memory?
Q2: How often should the partition be changed?

A hard problem for general C code:

Pointers can have almost any value.

Memory might be allocated dynamically.

The same problems affect data cache modeling.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 24 / 27

Further Investigation

In fact, the memory addresses used for data accesses have an even more
significant effect on performance, because of the time taken to fetch data.

This work assumed a perfect data cache. A real data cache would be
a source of timing noise; this would be a severe problem. Every
hit/miss needs to be predicted in advance.

A scratchpad memory or locked cache would need to be used.
Automatic data scratchpad allocation is necessary but difficult.

Q1: Which variables should be stored in scratchpad? Which should be
stored in main memory?
Q2: How often should the partition be changed?

A hard problem for general C code:

Pointers can have almost any value.

Memory might be allocated dynamically.

The same problems affect data cache modeling.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 24 / 27

Further Investigation

A solution for automatic data scratchpad allocation would also relax the
constraints on dynamic data accesses, because:

The range of addresses for each data access would be known, so
dynamic disambiguation would be unnecessary.

However, this is not an easy problem.

Existing automatic data scratchpad allocation systems assume no
pointers (global/stack arrays only).

Other solutions assume an unconventional program paradigm (e.g.
dataflow/actor-oriented model).

The problem needs to be solved for typical C programs; otherwise,
assumptions such as “perfect data cache” (as made in this work) will
continue to be unrealistic.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 25 / 27

Further Investigation

A solution for automatic data scratchpad allocation would also relax the
constraints on dynamic data accesses, because:

The range of addresses for each data access would be known, so
dynamic disambiguation would be unnecessary.

However, this is not an easy problem.

Existing automatic data scratchpad allocation systems assume no
pointers (global/stack arrays only).

Other solutions assume an unconventional program paradigm (e.g.
dataflow/actor-oriented model).

The problem needs to be solved for typical C programs; otherwise,
assumptions such as “perfect data cache” (as made in this work) will
continue to be unrealistic.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 25 / 27

Further Investigation

A solution for automatic data scratchpad allocation would also relax the
constraints on dynamic data accesses, because:

The range of addresses for each data access would be known, so
dynamic disambiguation would be unnecessary.

However, this is not an easy problem.

Existing automatic data scratchpad allocation systems assume no
pointers (global/stack arrays only).

Other solutions assume an unconventional program paradigm (e.g.
dataflow/actor-oriented model).

The problem needs to be solved for typical C programs; otherwise,
assumptions such as “perfect data cache” (as made in this work) will
continue to be unrealistic.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 25 / 27

Further Investigation

A solution for automatic data scratchpad allocation would also relax the
constraints on dynamic data accesses, because:

The range of addresses for each data access would be known, so
dynamic disambiguation would be unnecessary.

However, this is not an easy problem.

Existing automatic data scratchpad allocation systems assume no
pointers (global/stack arrays only).

Other solutions assume an unconventional program paradigm (e.g.
dataflow/actor-oriented model).

The problem needs to be solved for typical C programs; otherwise,
assumptions such as “perfect data cache” (as made in this work) will
continue to be unrealistic.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 25 / 27

Further Investigation

A solution for automatic data scratchpad allocation would also relax the
constraints on dynamic data accesses, because:

The range of addresses for each data access would be known, so
dynamic disambiguation would be unnecessary.

However, this is not an easy problem.

Existing automatic data scratchpad allocation systems assume no
pointers (global/stack arrays only).

Other solutions assume an unconventional program paradigm (e.g.
dataflow/actor-oriented model).

The problem needs to be solved for typical C programs; otherwise,
assumptions such as “perfect data cache” (as made in this work) will
continue to be unrealistic.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 25 / 27

Conclusions

Virtual traces allow speculative and out-of-order execution to be used,
so C can be reduced in comparison to an in-order CPU design.

The CPU constraints reduce the maximum performance but increase
the guaranteed performance.

Predictable management of data accesses is a problem that saps the
performance of virtual traces.

The automatic data scratchpad allocation problem must be solved.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 26 / 27

Conclusions

Virtual traces allow speculative and out-of-order execution to be used,
so C can be reduced in comparison to an in-order CPU design.

The CPU constraints reduce the maximum performance but increase
the guaranteed performance.

Predictable management of data accesses is a problem that saps the
performance of virtual traces.

The automatic data scratchpad allocation problem must be solved.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 26 / 27

Conclusions

Virtual traces allow speculative and out-of-order execution to be used,
so C can be reduced in comparison to an in-order CPU design.

The CPU constraints reduce the maximum performance but increase
the guaranteed performance.

Predictable management of data accesses is a problem that saps the
performance of virtual traces.

The automatic data scratchpad allocation problem must be solved.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 26 / 27

Conclusions

Virtual traces allow speculative and out-of-order execution to be used,
so C can be reduced in comparison to an in-order CPU design.

The CPU constraints reduce the maximum performance but increase
the guaranteed performance.

Predictable management of data accesses is a problem that saps the
performance of virtual traces.

The automatic data scratchpad allocation problem must be solved.

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 26 / 27

End

All questions and comments are welcome!

You can find the O3+VTC experimental software on the web at
http://www.jwhitham.org.uk/c/vt.html

Jack Whitham and Neil Audsley () Predictable Out-of-order Execution Using Virtual TracesDecember 3rd 2008 27 / 27

http://www.jwhitham.org.uk/c/vt.html

