
Using Hardware Methods to Improve
Time-predictable Performance in

Real-time Java Systems

Jack Whitham, Neil Audsley, Martin Schoeberl

University of York, Technical University of Vienna

Hardware Methods

• Lightweight, Java-friendly co-processors.

• A hardware method replaces software functionality with
application-specific co-processor hardware.

• Benefits:

– Higher performance

– Time-predictable operation

– Energy savings

Implementations

• Hardware methods have been implemented for JOP.
– The JOP CPU is a WCET-friendly platform, good for

demonstrating time-predictability advantages of co-processors.

– The JOP CPU and the co-processors exist in the same FPGA.

• A second implementation of hardware methods for PC
hardware is currently being developed.
– Co-processors are implemented on a PCI Express FPGA card.

Co-processors and Java (1)

• Java isn’t designed for direct hardware access, but it is
possible, e.g. using:
– RawMemoryAccess [13]

– Hardware Objects for Java [29]

• These approaches allow memory-mapped registers to
be read and written.

• This is a low-level interface that breaks Java
abstractions such as “objects” and “methods”.

Co-processors and Java (2)

• A Java co-processor interface should be more like the
Java Native Interface (JNI).

– It should hide the low-level details of software to
hardware communication.

• This helps with code maintenance, portability and reuse.

– The interface should preserve Java abstractions as
far as possible (methods, objects, variables…)

• This makes the interface easy to use.

• Just call a method to make use of a co-processor.

Issues

• How is the data within an object shared between
hardware and software?

• How is the structure of an object shared between
hardware and software?

• Should a co-processor be able to call software methods?

How is the data within an object shared between
hardware and software?

• Most co-processors act on vectors, not scalar data; this
needs to be shared between producer and consumer.

• Options include:
– A single memory space is shared by

both co-processors and CPUs.

– The CPU memory space is accessed by
the co-processors via a bridge.

– Objects are copied to scratchpad memory
local to each co-processor during setup.

• The JOP implementation of hardware methods uses a
single memory space.

How is the structure of an object shared
between hardware and software?

• In Java, the memory layout and location of an object is
defined by the JVM.

• Options include:
– Moving the JVM’s object management functionality into

a co-processor, so that both hardware and software have
a single point of reference [8].

– Using JNI to translate objects into a format accessible
from C, since the layout of C structures is well-defined [6].

– Route all memory accesses via the JVM [30].

• The JOP implementation of hardware methods uses
special bytecodes to determine the memory locations of
objects.

Should a co-processor be able to call software
methods?

• This would be a powerful mechanism for sending data
and messages between a co-processor and software.

• Implications:
– The JVM must wait for messages from the

co-processor, other than “completion”.

– Co-processors need to be able to act as “masters”
and cannot be simple reactive components.

• The “hardware thread interface” mechanism uses a
proxy thread for this purpose [30].
– However, we are unconvinced that the extra complexity is

worthwhile.

• The JOP implementation omits this functionality.

Hardware Methods for JOP (1)

Hardware Methods for JOP (2)

The interface class translates a Java operation (method call)
into a co-processor operation. Example:

public class mac_coprocessor {

public static mac_coprocessor getInstance();

public int mac1 (int size,

int[] alpha, int[] beta);

}

Hardware Methods for JOP (3)
The interface hardware tells the co-processor
what to do, via a series of VHDL/Verilog wires.
The wire values are derived from the
parameters given to the method. Example:

entity mac_coprocessor_if is port (
clk : in std_logic;
reset : in std_logic;

method_mac1_param_size : out vector(31 downto 0);
method_mac1_param_alpha : out vector(23 downto 0);
method_mac1_param_beta : out vector(23 downto 0);
method_mac1_return : in vector(31 downto 0);
method_mac1_start : out std_logic;
method_mac1_running : in std_logic;

cc_out_data : out vector(31 downto 0);
cc_out_wr : out std_logic;
cc_out_rdy : in std_logic;
cc_in_data : in vector(31 downto 0);
cc_in_wr : in std_logic;
cc_in_rdy : out std_logic);
end entity mac_coprocessor_if;

Hardware Methods for JOP (4)

Both the interface software and the interface
hardware are automatically generated from
interface description language (IDL) code. Example:

COPROCESSOR mac_coprocessor
METHOD mac1
PARAMETER size int
PARAMETER alpha int[]
PARAMETER beta int[]
RETURN int

Calling a hardware method

Flow of execution

Implementing a hardware method

G
e
n

e
ra

te
d

in
te

rf
a
c
e

h
w

fo
r

c
o

-p
ro

c
e

s
s
o

r

M
e

m
o
ry

b
u

s
in

te
rf

a
c
e

M
e
m

o
ry

b
u
s

in
te

rf
a

c
e

Features

• Details of the hardware/software interface
are hidden by the interface generator.

• The user only needs to:
– Specify the interface using IDL code.

– Write a co-processor that receives parameters
(as VHDL/Verilog signals).

• Using a co-processor is as simple as
it could possibly be.

WCET Analysis for
Hardware Methods (1)

• WCET = worst case execution time
– Maximum possible execution time for a program.

– JOP includes the WCA tool, which computes
a safe and tight WCET estimate.

• In software, improved performance often comes at the
cost of time-predictability.
– e.g. Less accurate WCET estimates,

or reduced average execution time, but increased WCET.

– This does not apply to co-processors!

WCET Analysis for
Hardware Methods (2)

• Goal of WCET analysis for hardware methods:
compute maximum time between point A and point B.

Point A Point B

Time

WCET Analysis for
Hardware Methods (3)

• Phases 1 and 3 are easily analysed.

• WCET depends only on software operations.

• The existing WCA tool for JOP
has all the required features.

WCET Analysis for
Hardware Methods (4)

• Phase 2 depends on the hardware execution time.

• In software, a while loop polls for completion.

WCET of Co-processor Hardware

• Assume the co-processor has a linear (i.e. O(n)) execution time.

• Model it using three constants, k1, k2, k3:

k3 is the cost of phases 1 and 3 (computed by WCA).

k2 is derived by looking at the co-processor’s state machine;
how long does it operate on each data item?

k1 is whatever remains.

Time

Hardware
setup

overhead

k1

Per-
iteration

overhead

k2 k2 k2

Software
setup

overhead

k3

Co-processor Execution Time b

Total hardware method execution time E

WCET of Software

public void _wait_completed(int start_message) {
int reply_identifier = (start_message >> 16) | 0x8000;
int reply = 0;

while (((reply & 1) == 1) // @WCA loop<=s
|| (reply_identifier != (reply >> 16))) {

control_channel.data = start_message;// ask: is done?
reply = control_channel.data; // reply: yes/no

}
}

• Let i be the per-iteration cost of the while loop.

• Let E be the total hardware method WCET.

• The maximum number
of loop iterations s is
determined using an
equation (right).

Hardware Methods Evaluation

• Goal: compare the WCET of various functions
on JOP, when implemented as:

– Software (in pure Java)

– Co-processors (using hardware methods)

• The evaluation considers the following:

– Functions that process arrays.

– Functions that may contain infeasible paths.

– Functions that are naturally parallelisable.

Array Processing (1)

• Example: multiply/accumulate:

• Benefit of hardware methods: improved average
and worst-case performance.

public int mac1(int size, int[]alpha, int[]beta) {
int out = 0;
for (int i = 0; i < size; i++)
{

out += alpha[i] * beta[i];
}
return out;

}

Array Processing (2)

Implementation

of mac1

WCET

(10,000
MACs)

Overhead

k1 + k3

Per-iteration

cost k2

Pure Java 730,334 334 73

Hardware
Method

60,916 916 6

• On the test JOP platform with one CPU and one
hardware method, MAC is 12 times faster in
hardware - in the worst case.

Infeasible Paths (1)

• Example: search an array for a maximum value:

• How often is the if condition true?

• Pessimistic assumption: always.

• Optimistic assumption: once.

• With a hardware method: it doesn’t matter.

public int search_max(int size, int[]data) {
int max = 0;
for (int i = 0 ; i < size ; i ++)
{

int d = data[i];
if (d > max) max = d; // how often?

}
return max;

}

Infeasible Paths (2)

Implementation

of search_max

WCET

(10,000 items)

Overhead

k1 + k3

Per-iteration

cost k2

Pure Java

(optimistic)

420,184 184 42

Pure Java

(pessimistic)

450,308 308 45

Hardware Method 30,765 765 3

• The per-iteration cost is much smaller and it’s
the same in the best and worst case.

• Infeasible paths are not important.

Parallel Operations (1)

• Example: counting the number of bits that are 1:

• Benefit of hardware methods: do all operations
within the inner loop in parallel.

public int bit_count(int size, int[]data)
{

int count = 0;
for (int i = 0 ; i < size ; i ++)
{

int d = data [i];
for (int j = 0 ; j < 32 ; j ++)
{

if ((d & 1) == 1) count ++;
d = d >> 1;

}
}
return count;

}

Parallel Operations (2)

• Basic improvement using a lookup table:

• This provides some degree of parallelism…

• But hardware methods allow even more.

public int bit_count(int size, int[]data)
{

int count = 0;
for (int i = 0 ; i < size ; i ++)
{

int d = data [i];
for (int j = 0 ; j < 4 ; j ++)
{

count += lut [d & 255];
d = d >> 8;

}
}
return count;

}

Parallel Operations (3)

Implementation

of bit_count

WCET

(10,000 items)

Overhead

k1 + k3

Per-iteration

cost k2

Pure Java

(naive)

12,300,308 308 1230

Pure Java

(lookup table)

2,650,308 308 265

Hardware Method 30,765 765 3

• A substantial improvement!

Conclusion

• Hardware methods can be used to replace Java
methods in embedded real-time systems:

– They improve average and worst-case performance.

– They act as plug-in replacements for software
methods, abstracting the details of hardware access.

• Currently implemented for the JOP platform.

– An implementation for the PC platform is in progress.

Thank You

• Questions?

