
MCGREP
A Predictable Architecture for Embedded

Real-Time Systems
Jack Whitham and Neil Audsley

jack@cs.york.ac.uk

Real Time Systems Group

Department of Computer Science

University of York

RTSS 2006 – p.



Overview
A real-time problem,

The proposed solution and its features,

Initial implementation and experiments,

Results,

Conclusion and future work.

RTSS 2006 – p.



A Real-Time Problem
We always need more computing power!
Requirements for a processor for a real-time
system:

RTSS 2006 – p.



A Real-Time Problem
We always need more computing power!
Requirements for a processor for a real-time
system:

Be Predictable
(part of ensuring correctness)

RTSS 2006 – p.



A Real-Time Problem
We always need more computing power!
Requirements for a processor for a real-time
system:

Be Predictable
(part of ensuring correctness)

Be Fast
(run more demanding applications)

These conflict!

RTSS 2006 – p.



A Processor
Parallel problem: Portable embedded devices
have limited electrical power.

Requirements for a processor for an embedded
system:

RTSS 2006 – p.



A Processor
Parallel problem: Portable embedded devices
have limited electrical power.

Requirements for a processor for an embedded
system:

Be Low Power Consumption
(conserve battery life)

RTSS 2006 – p.



A Processor
Parallel problem: Portable embedded devices
have limited electrical power.

Requirements for a processor for an embedded
system:

Be Low Power Consumption
(conserve battery life)

Be Fast
(run more demanding applications)

These also conflict!

RTSS 2006 – p.



Our Problem
Real-time systems need the following in the
future:

Low Power Consumption
(conserve battery life)

Predictability
(ensure correctness)

Execution Speed
(run more demanding applications)

RTSS 2006 – p.



Custom Hardware
Application-specific hardware:

Accelerates processing bottlenecks
(“hotspots”),

RTSS 2006 – p.



Custom Hardware
Application-specific hardware:

Accelerates processing bottlenecks
(“hotspots”),

Not reusable in general,

RTSS 2006 – p.



Custom Hardware
Application-specific hardware:

Accelerates processing bottlenecks
(“hotspots”),

Not reusable in general,

Not scalable in general,

RTSS 2006 – p.



Custom Hardware
Application-specific hardware:

Accelerates processing bottlenecks
(“hotspots”),

Not reusable in general,

Not scalable in general,

Introduces co-design problem.

RTSS 2006 – p.



Reconfigurable
hardware

Create “virtual hardware” devices on one
reprogrammable array.

Adapt to mode changes,

RTSS 2006 – p.



Reconfigurable
hardware

Create “virtual hardware” devices on one
reprogrammable array.

Adapt to mode changes,

Support many more hotspots,

RTSS 2006 – p.



Reconfigurable
hardware

Create “virtual hardware” devices on one
reprogrammable array.

Adapt to mode changes,

Support many more hotspots,

Introduces configuration generation
problem,

RTSS 2006 – p.



Reconfigurable
hardware

Create “virtual hardware” devices on one
reprogrammable array.

Adapt to mode changes,

Support many more hotspots,

Introduces configuration generation
problem,

Introduces compatibility problem,

RTSS 2006 – p.



Reconfigurable
hardware

Create “virtual hardware” devices on one
reprogrammable array.

Adapt to mode changes,

Support many more hotspots,

Introduces configuration generation
problem,

Introduces compatibility problem,

Introduces predictability problem.

RTSS 2006 – p.



Fine-grained
array [25]

RTSS 2006 – p.



Coarse-grained
array [9, 24]

RTSS 2006 – p.



Proposed Solution

Microcoded coarse-grained reconfigurable
processor: software controlled CPU

Based on Coarse-grained Array,

RTSS 2006 – p. 10



Proposed Solution

Microcoded coarse-grained reconfigurable
processor: software controlled CPU

Based on Coarse-grained Array,

Many reprogrammable processors,

RTSS 2006 – p. 10



Proposed Solution

Microcoded coarse-grained reconfigurable
processor: software controlled CPU

Based on Coarse-grained Array,

Many reprogrammable processors,

Each can run programs from external
memory and from internal microcode.

RTSS 2006 – p. 10



MCGREP Paradigm

Applications execute from external memory,
except when hotspots are reached.

RTSS 2006 – p. 11



MCGREP Paradigm

Applications execute from external memory,
except when hotspots are reached.

Hotspot tasks are distributed to all or part of
the reconfigurable array.

RTSS 2006 – p. 11



MCGREP Paradigm

Applications execute from external memory,
except when hotspots are reached.

Hotspot tasks are distributed to all or part of
the reconfigurable array.

ILP exploited as multiple processors may be
used to execute each task.

RTSS 2006 – p. 11



MCGREP Paradigm

Applications execute from external memory,
except when hotspots are reached.

Hotspot tasks are distributed to all or part of
the reconfigurable array.

ILP exploited as multiple processors may be
used to execute each task.

Applications are speeded up!

RTSS 2006 – p. 11



MCGREP Paradigm

Applications execute from external memory,
except when hotspots are reached.

Hotspot tasks are distributed to all or part of
the reconfigurable array.

ILP exploited as multiple processors may be
used to execute each task.

Applications are speeded up!

Predictability and scalability retained.

RTSS 2006 – p. 11



Distributing
Applications (1)

RTSS 2006 – p. 12



Distributing
Applications (2)

RTSS 2006 – p. 13



Distributing
Applications (3)

RTSS 2006 – p. 14



Distributing
Applications (4)

RTSS 2006 – p. 15



Distributing
Applications (5)

RTSS 2006 – p. 16



Distributing
Applications (6)

RTSS 2006 – p. 17



Distributing
Applications (7)

RTSS 2006 – p. 18



Distributing
Applications (8)

RTSS 2006 – p. 19



Distributing
Applications (9)

RTSS 2006 – p. 20



How it works

RTSS 2006 – p. 21



How it works

RTSS 2006 – p. 22



Making microcode

Input: machine code ,

1. Generate operation graph,

2. Re-schedule operations to make best use of
n processors,

3. Convert schedule to microcode for each
processor.

RTSS 2006 – p. 23



Making microcode (1)

1: Generate operation graph.

next

next

next

next

00: Alpha 

00: addi r22,r22,0x1

04: add r3,r12,r22

08: load setup r33,r3,0x0

08: load stall r3,r33,

0c: sfi r3,0x0

10: bf 

00: Omega 

next

target

next

next

 0: 9e d6 00 01 l.addi r22,r22,0x1

 4: e0 6c b0 00 l.add r3,r12,r22

 8: 90 63 00 00 l.lbs r3,0x0(r3)

 c: bc 23 00 00 l.sfnei r3,0x0

10: 13 ff ff fc l.bf 0x0

14: 15 00 00 00 l.nop 0x0

RTSS 2006 – p. 24



Making microcode (2)

2: Re-schedule operations to make best use of n

processors.
Sample (n = 2):

Node 0 Node 1

Time 0 load setup nop

address← r252

Time 1 load stall nop

r250← output

Time 2 add compare

r254← r254 + 1 r244← r250 6= 0

Time 3 add branch

r252← r248 + r254 r244

RTSS 2006 – p. 25



Making microcode (3)

3: Schedule converted to microcode for each
processor.

Each micro-instruction includes:

Settings for multiplexers,

Register file commands,

ALU commands,

Branch unit commands.

RTSS 2006 – p. 26



Sample microcode
node 0 node 1

04 16000245 03b801f9 00000200 00b80000

05 0c000245 03b801fb 00000200 00b80000

06 0cfe8245 03b801fd 00fe8245 00b801fd

07 00ff8245 03b861ff 00ff8245 00b801ff

08 00000200 03b86000 00fc824d 00b801f9

09 00000200 03b80000 00fd824d 00b801fb

0a 00000200 03b85e4e 00000200 00b80000

RTSS 2006 – p. 27



Predictability
retained...

At the microarchitecture level...
(from Heckmann et. al.[10])

No caches,

RTSS 2006 – p. 28



Predictability
retained...

At the microarchitecture level...
(from Heckmann et. al.[10])

No caches, ...or at least cache replacement
strategies that always lead to known states,

RTSS 2006 – p. 28



Predictability
retained...

At the microarchitecture level...
(from Heckmann et. al.[10])

No caches, ...or at least cache replacement
strategies that always lead to known states,

No dynamic branch prediction,

RTSS 2006 – p. 28



Predictability
retained...

At the microarchitecture level...
(from Heckmann et. al.[10])

No caches, ...or at least cache replacement
strategies that always lead to known states,

No dynamic branch prediction,

No shortcuts in hardware implementation,

RTSS 2006 – p. 28



Predictability
retained...

At the microarchitecture level...
(from Heckmann et. al.[10])

No caches, ...or at least cache replacement
strategies that always lead to known states,

No dynamic branch prediction,

No shortcuts in hardware implementation,

In-order execution,

RTSS 2006 – p. 28



Predictability
retained...

At the microarchitecture level...
(from Heckmann et. al.[10])

No caches, ...or at least cache replacement
strategies that always lead to known states,

No dynamic branch prediction,

No shortcuts in hardware implementation,

In-order execution,

Simple pipeline.

RTSS 2006 – p. 28



Predictability
retained...

And at the array level:

Array composed of predictable parts,

RTSS 2006 – p. 29



Predictability
retained...

And at the array level:

Array composed of predictable parts,

Applications scheduled in predictable fashion,

RTSS 2006 – p. 29



Predictability
retained...

And at the array level:

Array composed of predictable parts,

Applications scheduled in predictable fashion,

Microcode for processors generated by
predictable algorithms.

RTSS 2006 – p. 29



Predictability
retained...

And at the array level:

Array composed of predictable parts,

Applications scheduled in predictable fashion,

Microcode for processors generated by
predictable algorithms.

Result: No special WCET analysis difficulty is
introduced.

RTSS 2006 – p. 29



This Implementation

Implemented on FPGA and in software simulator.

Only two processors, permanently locked
together,

RTSS 2006 – p. 30



This Implementation

Implemented on FPGA and in software simulator.

Only two processors, permanently locked
together,

Microcode task fragments generated by partly
manual process,

RTSS 2006 – p. 30



This Implementation

Implemented on FPGA and in software simulator.

Only two processors, permanently locked
together,

Microcode task fragments generated by partly
manual process,

No predication,

RTSS 2006 – p. 30



This Implementation

Implemented on FPGA and in software simulator.

Only two processors, permanently locked
together,

Microcode task fragments generated by partly
manual process,

No predication,

Executes either RISC code (via interpreter
microprogram) or task fragments written in
microcode.

RTSS 2006 – p. 30



Toolchain

C Source Code

Object Code

Executable Program

Hotspots Extracted

Microcode Definition

binary modifier

gcc (C compiler)

Microcode compiler

ld (linker)

Patched Executable

Profile/Analysis Data

RTSS 2006 – p. 31



Evaluation
1. Instruction Throughput versus Hardware Size
Comparison by experiment:

RTSS 2006 – p. 32



Evaluation
1. Instruction Throughput versus Hardware Size
Relative FPGA areas:

OpenRISC

MCGREP

Microblaze

RTSS 2006 – p. 33



Evaluation
2. Instruction Throughput versus Predictability -

Task execution time independent of hardware
state: all instructions have a fixed execution
time.

RTSS 2006 – p. 34



Evaluation
2. Instruction Throughput versus Predictability -

Task execution time independent of hardware
state: all instructions have a fixed execution
time.

Execution highly resistant to interference:
experimental evidence is given in the paper.

RTSS 2006 – p. 34



Evaluation
2. Instruction Throughput versus Predictability -

Task execution time independent of hardware
state: all instructions have a fixed execution
time.

Execution highly resistant to interference:
experimental evidence is given in the paper.

WCET analysis does not need to track the
hardware state.

RTSS 2006 – p. 34



Desirable Properties

There is a mechanism for generating very low
level microcode from machine code...

can this be used for anything else?

RTSS 2006 – p. 35



Desirable Properties

Define critical RTOS components in assembly or
C, then turn them into microcode, e.g.

RTSS 2006 – p. 36



Desirable Properties

Define critical RTOS components in assembly or
C, then turn them into microcode, e.g.

Microcoded context switcher,

RTSS 2006 – p. 36



Desirable Properties

Define critical RTOS components in assembly or
C, then turn them into microcode, e.g.

Microcoded context switcher,

Microcoded interrupt service routine,

RTSS 2006 – p. 36



Desirable Properties

Define critical RTOS components in assembly or
C, then turn them into microcode, e.g.

Microcoded context switcher,

Microcoded interrupt service routine,

Any atomic operation,

RTSS 2006 – p. 36



Desirable Properties

Define critical RTOS components in assembly or
C, then turn them into microcode, e.g.

Microcoded context switcher,

Microcoded interrupt service routine,

Any atomic operation,

Immediate priority ceiling protocol.

Paper includes example microcode for these.

RTSS 2006 – p. 36



Conclusion
New implementation option for
real-time/embedded systems,

RTSS 2006 – p. 37



Conclusion
New implementation option for
real-time/embedded systems,

Compares well to existing soft cores,

RTSS 2006 – p. 37



Conclusion
New implementation option for
real-time/embedded systems,

Compares well to existing soft cores,

Predictable speedup and flexible architecture
offered.

RTSS 2006 – p. 37



Conclusion
New implementation option for
real-time/embedded systems,

Compares well to existing soft cores,

Predictable speedup and flexible architecture
offered.

Future plans - to experiment with...

Larger versions of architecture,

RTSS 2006 – p. 37



Conclusion
New implementation option for
real-time/embedded systems,

Compares well to existing soft cores,

Predictable speedup and flexible architecture
offered.

Future plans - to experiment with...

Larger versions of architecture,

Multitasking, dynamic compilation and 2D
scheduling.

RTSS 2006 – p. 37



Questions?

jack@cs.york.ac.uk

Real Time Systems Group
Department of Computer Science

University of York

RTSS 2006 – p. 38


	Overview
	A Real-Time Problem
	A Real-Time Problem
	A Real-Time Problem

	A Processor
	A Processor
	A Processor

	Our Problem
	Custom Hardware
	Custom Hardware
	Custom Hardware
	Custom Hardware

	Reconfigurable hardware
	Reconfigurable hardware
	Reconfigurable hardware
	Reconfigurable hardware
	Reconfigurable hardware

	Fine-grained array~([25])
	Coarse-grained array~([9, 24])
	Proposed Solution
	Proposed Solution
	Proposed Solution

	MCGREP Paradigm
	MCGREP Paradigm
	MCGREP Paradigm
	MCGREP Paradigm
	MCGREP Paradigm

	header (1)
	header (2)
	header (3)
	header (4)
	header (5)
	header (6)
	header (7)
	header (8)
	header (9)
	How it works
	How it works
	Making microcode
	Making microcode (1)
	Making microcode (2)
	Making microcode (3)
	Sample microcode
	Predictability retained...
	Predictability retained...
	Predictability retained...
	Predictability retained...
	Predictability retained...
	Predictability retained...

	Predictability retained...
	Predictability retained...
	Predictability retained...
	Predictability retained...

	This Implementation
	This Implementation
	This Implementation
	This Implementation

	Toolchain
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation

	Desirable Properties
	Desirable Properties
	Desirable Properties
	Desirable Properties
	Desirable Properties
	Desirable Properties

	Conclusion
	Conclusion
	Conclusion
	Conclusion
	Conclusion

	Questions?

