

Implementing Time-Predictable
Load and Store Operations

Jack Whitham
jack@cs.york.ac.uk

Neil Audsley
neil@cs.york.ac.uk

SMMU

Scratchpad Memory Management Unit.

The combination, SMMU + Scratchpad, is a data
cache alternative.

CPU
External

RAM

External
memory bus

SMMU

Scratchpad

SoC / single IC

Why replace the cache?

Within embedded hard real-time systems...

Time-predictable behavior is required.

- There are hard deadlines.

Systems need to be composed of time-predictable
components.

- Caches are not very predictable for worst-case
execution time (WCET).

Are deadlines met? [25]

Program

Architecture
Information

WCET
Analyser

Estimated maximum
execution time

Schedulability
analysis, safety
checks, etc.

WCET Difficulties (1)

Program

Architecture
Information

WCET
Analyser

Unbounded loops

Use of dynamic
data structures

Caches

Complex pipelines

WCET Difficulties (2)

Program

Architecture
Information

WCET
Analyser

Unbounded loops

Use of dynamic
data structures

Caches

Complex pipelines

The focus of this paper is on replacing data
caches with something time-predictable that still
allows the use of dynamic data structures.

Example (1)

Colour space conversion in libjpeg [12].

Y channel
input data

U channel
input data

V channel
input data

Colour space
conversion

program

ycc_rgb_convert

Lookup
tables

RGB output for
display on screen

WCET
Analyser ?

Example (2)

ycc_rgb_convert reads from eight objects in
memory, and writes to one.

 FOR row FROM 0 TO num_rows – 1 DO
 FOR col FROM 0 TO num_cols - 1 DO
 y := inptr0[col];
 cb := inptr1[col];
 cr := inptr2[col];
 outptr[0] := range_limit[y + Crrtab[cr]];
 outptr[1] := range_limit[y +
 ((Cbgtab[cb] + Crgtab[cr]) / 65536)];
 outptr[2] := range_limit[y + Cbbtab[cb]];
 outptr := outptr + 3;
 END FOR;
 END FOR;

1 range limit table
1 output buffer (RGB)

3 buffers of input data
4 conversion tables

If a Cache is Used... (1)

As the base addresses of the nine
objects are unknown during analysis,

and the input data in the Y, U and V
buffers is unknown...

⇒ Any pair of memory accesses may conflict!

⇒ Number of cache misses affected by reference
string.

⇒ What is the WCET?

If a Cache is Used... (2)

400k
600k

800k
1000k

1200k
1400k

1600k
1800k

2000k
2200k

2400k
2600k

2800k
3000k

3200k
3400k

3600k
3800k

4000k
4200k

4400k
4600k

4800k
5000k

5200k
5400k

0

500

1000

1500

2000

2500

3000

3500

Measured Execution Time

F
re

qu
en

cy

Summary

Unknown base address / unknown input data is a
problem for WCET analysis of data caches.

Caches are a poor solution here.

Caches should be replaced

Embedded hard real-time systems need a
replacement for a cache.

Must have time-predictable behaviour that is
independent of base address and input data.

System
79 210 70
17 50 50

PPC 405 [36] 33 100 125
31 125 125

Latency
(CPU clock cycles)

CPU frequency
(MHz)

Bus frequency
(MHz)

ARM MPcore [1]
StrongARM-110 [30]

Microblaze [40]

Scratchpad (1)

A small, fast and energy-efficient RAM that is
physically located close to the CPU core [31].

Accesses to scratchpad are always time-
predictable regardless of input data.

Scratchpad
CPU

Bus within CPU core

DDR2
SDRAM

External
memory bus

Scratchpad (2)

Scratchpad
CPU

Bus within CPU core

DDR2
SDRAM

External
memory bus

Data

Scratchpad
CPU

Bus within CPU core

DDR2
SDRAM

External
memory bus

Data
Copy of Data

Scratchpad (3)

Scratchpad
CPU

Bus within CPU core

DDR2
SDRAM

External
memory bus

Data
Copy of Data

Problem solved?

No.

⇒ The physical location of data changes.

⇒ The logical address of data also changes.

Scratchpad (4)

Relocating data:

- Invalidates pointers to that data;

- Changes the behaviour of aliased pointers.

Data

Copy of Dataint * a

int * b

Data

int * a

int * b

⇒ A major problem for dynamic data structures.

Previous Work

Udayakumaran, Dominguez and Barua used
whole-program pointer analysis to safely manage
scratchpad space [33].

This solves problems caused by pointer aliasing
and invalidation.

It doesn't help with WCET analysis.

⇒ Location of data is determined at runtime and
is unknown during analysis.

New solution required

A replacement for a cache with time-predictable
behaviour that is independent of base address
and input data.

And... the replacement must guarantee that data
is in scratchpad.

And... logical addresses must not change.

SMMU

Scratchpad Memory Management Unit.

CPU
External

RAM

External
memory bus

SMMU

Scratchpad

Logical addresses Physical addresses

Data can be relocated from external RAM to
scratchpad without changing its logical address.

SMMU versus Scratchpad

Programs explicitly copy data from external
memory to scratchpad and vice versa.

The logical address does not change, i.e.:

⇒ Pointers are never invalidated.

⇒ Pointer aliasing is handled correctly.

⇒ Scratchpad allocation algorithms can consider
pointers rather than the objects they reference.

Inside the SMMU (1)

minimum

maximum

 a ≤ b
a

b

 a < b
a

b

AND
P

R
IO

R
IT

Y
E

N
C

O
D

E
R

ADD
offset

M
U

LT
IP

L
E

X
E

R

valid

PHYSICAL
ADDRESS
OUTPUTLOGICAL

ADDRESS
INPUT

External memory @ [0:199]

Scratchpad memory @ [300:349]

Copy the object in external memory
@ [100:112] to scratchpad @ [305, 317]

Inside the SMMU (2)

minimum

maximum

 a ≤ b
a

b

 a < b
a

b

AND
P

R
IO

R
IT

Y
E

N
C

O
D

E
R

ADD
offset

M
U

LT
IP

L
E

X
E

R

valid

PHYSICAL
ADDRESS
OUTPUTLOGICAL

ADDRESS
INPUT

295

100

112

101

6

1

306

Logical address 101 matches in SMMU.

Inside the SMMU (3)

minimum

maximum

 a ≤ b
a

b

 a < b
a

b

AND
P

R
IO

R
IT

Y
E

N
C

O
D

E
R

ADD
offset

M
U

LT
IP

L
E

X
E

R

valid

PHYSICAL
ADDRESS
OUTPUTLOGICAL

ADDRESS
INPUT

295

100

112

99

4

1

99

Logical address 99 does not match in SMMU.

Inside the SMMU (4)

Two further operations are implemented.

OPEN

Copy data from external memory to scratchpad and

add logical to physical address mapping.

CPU

Bus within CPU core

DDR2
SDRAM

External
memory bus

Data

Scratchpad

Copy of Data

SMMU

OPEN

+

Inside the SMMU (5)

CLOSE

Copy data from scratchpad to external memory and

delete logical to physical address mapping.

CPU

Bus within CPU core

DDR2
SDRAM

External
memory bus

Data

Scratchpad

Copy of Data

SMMU

CLOSE

-

Inside the SMMU (6)

What if data areas overlap?

 Do OPEN and CLOSE still work correctly?

 Always?

How to use the SMMU

Ideally:

 An algorithm modifies your program to add OPEN and
CLOSE operations as appropriate.

 The algorithm allocates scratchpad space.

Result: time-predictable memory operations using the
scratchpad whenever possible.

For the experiments in this paper:

 The program was modified by hand.

 Scratchpad space was allocated like a stack.

Back to the example

Nine dynamic pointers could be OPENed during
ycc_rgb_convert.

Y channel
input data

U channel
input data

V channel
input data

Colour space
conversion

program

ycc_rgb_convert

Lookup
tables

RGB output for
display on screen

WCET
Analyser ?

 range_limit_ref := OPEN(range_limit, SIZE(range_limit));

 FOR row FROM 0 TO num_rows – 1 DO
 inptr0_ref := OPEN(inptr0, num_cols);
 inptr1_ref := OPEN(inptr1, num_cols);
 inptr2_ref := OPEN(inptr2, num_cols);

 FOR col FROM 0 TO num_cols - 1 DO
 y := inptr0[col];
 cb := inptr1[col];
 cr := inptr2[col];
 outptr[0] := range_limit[y + Crrtab[cr]];
 outptr[1] := range_limit[y +
 ((Cbgtab[cb] + Crgtab[cr]) / 65536)];
 outptr[2] := range_limit[y + Cbbtab[cb]];
 outptr := outptr + 3;
 END FOR;

 CLOSE(inptr0_ref);
 CLOSE(inptr1_ref);
 CLOSE(inptr2_ref);

 END FOR;

 CLOSE(range_limit_ref);

SMMU for Microblaze (1)

Microblaze: soft CPU core for Xilinx FPGAs.

Microblaze
CPU

Local Memory Bus

DDR2
SDRAM

FPGA
block RAM

SMMU

Processor
Local Bus

Virtex-5 FPGA

SMMU implemented using VHDL [38].

SMMU for Microblaze (2)

On this platform:

 Accessing n words of external memory takes

C(n) = 31 + n/4

clock cycles.

 OPEN and CLOSE are implemented using memory
mapped registers.

Results (1)

Using the ycc_rgb_convert function on a
simulated platform:

Data cache “best” case

SMMU best and worst case

Data cache “worst” case

External memory only

0 100 200 300 400 500 600 700

Access time (millions of clock cycles)

Results (2)

Throughout the JPEG decoding process...
JPEG decoder

1 call, 100% of execution tIme

decompress_onepass
54 calls, 48.2%

ycc_rgb_convert
432 calls, 38.8%

jpeg_idct_fast
11664 calls, 28.6%

decode_mcu
3888 calls, 16.3%

 90% of memory accesses are routed to
scratchpad via the SMMU...

 even though 75% of all memory accesses use
dynamic data structures.

Results (3)

The remaining 10% of memory accesses
consume 61% of the execution time.

Consequently, the program's execution time is 2.7
times slower than a perfect data cache.

However:

 This is much better than external memory alone.

 This is both the best and worst case!

Conclusion

The reasons for replacing data caches have been
explained, along with the limitations of
scratchpads.

The SMMU has been proposed as a solution.

It has been applied to a case study.

It has been implemented in hardware.

Thankyou

The Real-time Systems Group
at the University of York.
http://www.cs.york.ac.uk/rts/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

