
  

Implementing Time-Predictable 
Load and Store Operations

Jack Whitham
jack@cs.york.ac.uk

Neil Audsley
neil@cs.york.ac.uk



  

SMMU

Scratchpad Memory Management Unit.

The combination, SMMU + Scratchpad, is a data 
cache alternative.
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Why replace the cache?

Within embedded hard real-time systems...

Time-predictable behavior is required.

- There are hard deadlines.

Systems need to be composed of time-predictable 
components.

- Caches are not very predictable for worst-case 
execution time (WCET).



  

Are deadlines met? [25]
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WCET Difficulties (1)
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WCET Difficulties (2)
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The focus of this paper is on replacing data 
caches with something time-predictable that still 
allows the use of dynamic data structures.



  

Example (1)

Colour space conversion in libjpeg [12].
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Example (2)

ycc_rgb_convert reads from eight objects in 
memory, and writes to one.

    FOR row FROM 0 TO num_rows – 1 DO
        FOR col FROM 0 TO num_cols - 1 DO
            y  := inptr0[col];
            cb := inptr1[col];
            cr := inptr2[col];
            outptr[0] := range_limit[y + Crrtab[cr]];
            outptr[1] := range_limit[y +
                ((Cbgtab[cb] + Crgtab[cr]) / 65536) ];
            outptr[2] := range_limit[y + Cbbtab[cb]];
            outptr := outptr + 3;
        END FOR;
    END FOR;

1 range limit table
1 output buffer (RGB)

3 buffers of input data
4 conversion tables



  

If a Cache is Used... (1)

As the base addresses of the nine 
objects are unknown during analysis,

and the input data in the Y, U and V 
buffers is unknown...

⇒ Any pair of memory accesses may conflict!

⇒ Number of cache misses affected by reference 
string.

⇒ What is the WCET?



  

If a Cache is Used... (2)
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Summary

Unknown base address / unknown input data is a 
problem for WCET analysis of data caches.

Caches are a poor solution here.



  

Caches should be replaced

Embedded hard real-time systems need a 
replacement for a cache.

Must have time-predictable behaviour that is 
independent of base address and input data.

System
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Scratchpad (1)

A small, fast and energy-efficient RAM that is 
physically located close to the CPU core [31].

Accesses to scratchpad are always time-
predictable regardless of input data.
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Scratchpad (2)
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Scratchpad (3)
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Problem solved?

No.

⇒ The physical location of data changes.

⇒ The logical address of data also changes.



  

Scratchpad (4)

Relocating data:

- Invalidates pointers to that data;

- Changes the behaviour of aliased pointers.

Data

Copy of Dataint * a
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Data

int * a

int * b

⇒ A major problem for dynamic data structures.



  

Previous Work

Udayakumaran, Dominguez and Barua used 
whole-program pointer analysis to safely manage 
scratchpad space [33].

This solves problems caused by pointer aliasing 
and invalidation.

It doesn't help with WCET analysis.

⇒ Location of data is determined at runtime and 
is unknown during analysis.



  

New solution required

A replacement for a cache with time-predictable 
behaviour that is independent of base address 
and input data.

And... the replacement must guarantee that data 
is in scratchpad.

And... logical addresses must not change.



  

SMMU

Scratchpad Memory Management Unit.
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Data can be relocated from external RAM to 
scratchpad without changing its logical address.



  

SMMU versus Scratchpad

Programs explicitly copy data from external 
memory to scratchpad and vice versa.

The logical address does not change, i.e.:

⇒ Pointers are never invalidated.

⇒ Pointer aliasing is handled correctly.

⇒ Scratchpad allocation algorithms can consider  
pointers rather than the objects they reference.



  

Inside the SMMU (1)
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External memory @ [0:199]

Scratchpad memory @ [300:349]

Copy the object in external memory
@ [100:112] to scratchpad @ [305, 317]



  

Inside the SMMU (2)
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Inside the SMMU (3)
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Inside the SMMU (4)

Two further operations are implemented.

OPEN

Copy data from external memory to scratchpad and

add logical to physical address mapping.
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Inside the SMMU (5)

CLOSE

Copy data from scratchpad to external memory and

delete logical to physical address mapping.
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Inside the SMMU (6)

What if data areas overlap?

 Do OPEN and CLOSE still work correctly?

 Always?



  

How to use the SMMU

Ideally:

 An algorithm modifies your program to add OPEN and 
CLOSE operations as appropriate.

 The algorithm allocates scratchpad space.

Result: time-predictable memory operations using the 
scratchpad whenever possible.

For the experiments in this paper:

 The program was modified by hand.

 Scratchpad space was allocated like a stack.



  

Back to the example

Nine dynamic pointers could be OPENed during 
ycc_rgb_convert.
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 range_limit_ref := OPEN(range_limit, SIZE(range_limit));

    FOR row FROM 0 TO num_rows – 1 DO
     inptr0_ref := OPEN(inptr0, num_cols);
     inptr1_ref := OPEN(inptr1, num_cols);
     inptr2_ref := OPEN(inptr2, num_cols);

        FOR col FROM 0 TO num_cols - 1 DO
            y  := inptr0[col];
            cb := inptr1[col];
            cr := inptr2[col];
            outptr[0] := range_limit[y + Crrtab[cr]];
            outptr[1] := range_limit[y +
                ((Cbgtab[cb] + Crgtab[cr]) / 65536) ];
            outptr[2] := range_limit[y + Cbbtab[cb]];
            outptr := outptr + 3;
        END FOR;

    CLOSE(inptr0_ref); 
   CLOSE(inptr1_ref);
    CLOSE(inptr2_ref);

    END FOR;

 CLOSE(range_limit_ref);



  

SMMU for Microblaze (1)

Microblaze: soft CPU core for Xilinx FPGAs.
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SMMU for Microblaze (2)

On this platform:

 Accessing n words of external memory takes

C(n) = 31 + n/4

clock cycles.

 OPEN and CLOSE are implemented using memory 
mapped registers.



  

Results (1)

Using the ycc_rgb_convert function on a 
simulated platform:

Data cache “best” case

SMMU best and worst case

Data cache “worst” case

External memory only
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Results (2)

Throughout the JPEG decoding process...
JPEG decoder

1 call, 100% of execution tIme

decompress_onepass
54 calls, 48.2%

ycc_rgb_convert
432 calls, 38.8%

jpeg_idct_fast
11664 calls, 28.6%

decode_mcu
3888 calls, 16.3%

 90% of memory accesses are routed to 
scratchpad via the SMMU...

 even though 75% of all memory accesses use 
dynamic data structures.



  

Results (3)

The remaining 10% of memory accesses 
consume 61% of the execution time.

Consequently, the program's execution time is 2.7 
times slower than a perfect data cache.

However:

 This is much better than external memory alone.

 This is both the best and worst case!



  

Conclusion

The reasons for replacing data caches have been 
explained, along with the limitations of 
scratchpads.

The SMMU has been proposed as a solution.

It has been applied to a case study.

It has been implemented in hardware.



  

Thankyou

The Real-time Systems Group
at the University of York.
http://www.cs.york.ac.uk/rts/
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