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Abstract
It is notoriously difficult to model superscalar out-of-

order CPUs for the purposes of worst-case execution time
(WCET) analysis, which can force the use of simpler CPUs
in hard real-time systems. To address this problem, it has
been suggested that traces could be used to capture the
timing properties of a complex CPU operation scheduler
as it runs a sequence of basic blocks. In previous work,
traces have been implemented using application-specific
microcode.

This paper proposes restrictions to a dynamic su-
perscalar out-of-order CPU to implement virtual traces.
These have the same timing properties as the traces in pre-
vious work, but microcode is not used. Instead, CPU mod-
ifications implement the same functionality. This allows
traces to be used throughout a program because space re-
quirements are minimal. To take advantage of this, a new
allocation algorithm is proposed and evaluated for virtual
traces.

1 Introduction
Worst-case execution time (WCET) analysis is an im-

portant part of hard real-time systems design. It is used
within schedulability analysis to ensure that tasks are fea-
sible, i.e. deadlines will always be met. WCET analy-
sis is highly effective when applied to programs running
on simple CPU models, but useful results are not so eas-
ily obtained for modern CPU designs. Makers of WCET
analysis tools must contend with (1) the high cost of mak-
ing exact models of complex CPUs [6], (2) the possibil-
ity of anomalous timing behavior [19], and (3) the prob-
lem of making analysis feasible without increasing pes-
simism [22]. (A pessimistic WCET value is an overesti-
mate of the true WCET.)

A key capability that is not well supported by anal-
ysis is out-of-order execution [5]. Modeling approaches
make simplifying assumptions [7] or avoid speculative ex-
ecution [16] and this introduces pessimism. Architectural
modifications are one solution: CPU execution can be con-
strained to follow traces when executing code that makes
a significant contribution to the WCET, e.g. loops. Traces
implement acyclic paths within a program, and are usually
encoded as explicitly parallel operations with assumptions
about the execution path, allowing speculative and out-of-

order execution [4]. The timing behavior of a trace is pre-
cisely known, since speculative execution is planned dur-
ing compilation [5]. Using traces, a predictable CPU can
support out-of-order execution without two of the prob-
lems associated with WCET analysis, since (1) the CPU
modeling cost is low because trace execution times can be
measured directly and (2) there is no possibility of timing
anomalies because no dynamic resource allocation deci-
sions are made [19]. In principle, traces provide the twin
benefits of simple and accurate WCET analysis and re-
duced execution time.

This paper makes two contributions. Firstly, previous
work [21] is extended to model virtual traces. These
provide a new way to implement traces that is (1) eas-
ier to accommodate into existing CPU designs, (2) does
not require the storage of many thousands of bits of mi-
crocode, and (3) provides the benefits of traces through-
out a program. The timing analysis model is unchanged
from previous work, but the execution model for the pro-
gram is changed to support the new paradigm. Secondly,
a new allocation algorithm is proposed for virtual traces.
It assumes that traces can be allocated throughout a pro-
gram, so that every basic block is part of a trace. This
is possible with virtual traces because the storage require-
ments are minimal. Together, the algorithm and the vir-
tual trace model are used to evaluate the new implementa-
tion paradigm; the discussion also describes problems that
might be introduced by virtual traces.

The paper is structured as follows. Section 2 summa-
rizes previous work and gives the model of a trace. Section
3 introduces virtual traces. Section 4 proposes and evalu-
ates an allocation algorithm for virtual traces. Section 5
describes related work and section 6 concludes.

2 Traces and WCET Analysis
This section explains the formal model for traces. Pre-

vious work [21] proposed that a CPU could be extended
with a trace scratchpad which operated as a writable con-
trol store. Programs could run on this CPU without using
the trace scratchpad, but the WCET of a program could
be reduced by using the scratchpad to store application-
specific microinstructions. An automatic process was pro-
posed for selecting these microinstructions: it reduced the
WCET of a program by building traces along paths that
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Figure 1. Example of a trace. The trace
includes three basic blocks and has two
exits. The execution time from the en-
trance to each exit can be calculated if
CPU operation is suitably constrained.

were frequently executed in the worst case. The rest of
the program was executed as conventional machine code.
This paper uses traces in a different way, allocating them
throughout a program, but the same model of a trace is
retained:

1. A trace replaces sequential machine code in one or
more basic blocks, forming part of a path through the
program.

2. A trace always begins execution with the CPU mi-
croarchitecture in a known state: about to execute
basic block e, which is known as the entrance.
Traces have exactly one entrance, i.e. they are su-
perblocks [5].

3. A trace requires a precisely known number of clock
cycles to reach each one of the n exits from the en-
trance. An exit is taken when a branch condition is
evaluated as True or the main path’s end is reached:
exits lead to another trace or machine code execution.

4. The path to exit i from entrance e is denoted as Pe,i

for WCET analysis purposes: Pe,i is a sequence of
basic blocks. The time taken is t(Pe,i).

5. A trace contains up to L conditional branches along
the main path Pe,0. Every other path Pe,j (j 6= 0)
also follows this path until conditional branch j is
reached. Then, Pe,j leads to an exit while Pe,0 con-
tinues. A trace has 1 ≤ n ≤ L + 1 exits.

6. After any exit, a transformation has been applied to
the program state (i.e. the program counter, RAM,
and general-purpose registers). This transformation
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Figure 2. A virtual trace is represented by
an encoded sequence of up to L branch
predictions. Each item is information
about a conditional branch along the main
path of the trace, telling the operation
scheduler the direction to be optimized.
Predictions can be not taken (NT) or
taken (T).

is guaranteed to be identical to the transformation that
would have been applied if the original machine code
had been executed.

The WCET of a program containing traces can be an-
alyzed using the implicit path enumeration technique
(IPET) because every t(Pe,i) is a constant integer. IPET
has the advantage of being able to accommodate any lin-
ear constraint on execution, and it can produce exact re-
sults when all constraints are known [15]. A timing graph
(T-graph) G = (V,E) is used to represent the program,
with E being the set of all basic blocks, and V being the
set of all the vertices that link them in the program’s con-
trol flow. Introducing traces transforms the T-graph of a
program, but because each trace is itself composed of ba-
sic blocks with fixed execution times, the WCET can still
be computed by IPET with a few additional constraints.

However, the WCET can also be reduced by careful
selection of traces, because speculation and out-of-order
execution can be carried out within each trace. Consider
Figure 1, where e = BB1, and there are two possible paths:
Pe,0 = [BB1, BB3, BB6] and Pe,1 = [BB1]. If it is
known that the basic block sequence Pe,0 is executed on
the worst-case execution path (WCEP), which is the path
through the program that produces the WCET, then the
WCET may be reduced by speculating that BB1 is likely
to be followed by BB3 and BB6, and executing operations
from those subsequent basic blocks early. This captures
more of the instruction level parallelism inherent in the
program [18]; the cost is that paths to other exits (Pe,1, in
this case) will take longer. Similar trace formation tech-
niques have been used for decades to reduce average case
execution time (ACET). In [21], it was applied within some
parts of a program to reduce the WCET. In this paper, it is
applied throughout a program.

3 Introducing Virtual Traces
Traces provide a way to use speculation and out-of-

order execution to reduce the WCET of a program, while
still permitting analysis by IPET, but they are limited by
the microcoded implementation. This section examines a



Trace scratchpad Virtual trace approach
approach (in [21]) (in this paper)
Scheduling
Offline only: micropro-
grams generated before
analysis

Online: performed dur-
ing execution

Trace execution timings (t(Pe,i))
Obtained by analyzing
microprograms

Obtained by measuring
virtual trace execution on
CPU

CPU design
Fully customized design
required

Minor changes to existing
design required

Extra storage required
> 100 bits per microin-
struction

O(L) bits per virtual trace

WCET analysis method
IPET IPET

Table 1. Contrasting approaches.

better way to implement the same functionality, using less
space and requiring much less custom hardware.

The function of the traces in previous work was to en-
sure that the activities of the operation scheduler would be
known during WCET analysis. There at least two ways to
do this. Firstly, one can decide on a schedule before anal-
ysis and then enforce that schedule using a custom micro-
program: this is the trace scratchpad approach. Secondly,
one can restrict the inputs to the dynamic operation sched-
uler within a CPU so that it operates in the same way as
an offline operation scheduler. This is the virtual trace
approach, because traces are not explicitly encoded as mi-
croinstructions and are not visible in the program. They
exist only for WCET analysis and reduction purposes. The
only part of a virtual trace that is actually visible to the
CPU is the sequence of branch predictions that encode
it (Figure 2). Both approaches require modifications to
a CPU but the latter requires fewer changes (Table 1).

An important feature of the virtual trace approach is
that the WCET analysis method is shared with the trace
scratchpad approach. This is because both approaches use
the same timing model (section 2).

3.1 Changes for a CPU core
To implement virtual traces, the behavior of the dy-

namic operation scheduler in the CPU must be restricted.
For the following discussion, the CPU is assumed to be a
superscalar out-of-order operation scheduler that makes at
most one prediction at each branch. The function of this
component is to assign incoming machine code instruc-
tions to CPU execution units. In a superscalar CPU, there
are several execution units, and the scheduler attempts to
keep all of them busy at all times. Previous work has
looked at modeling such devices so that the internal behav-
ior of the operation scheduler can be predicted [6, 16, 19]:

this work uses restrictions so that the behavior does not
need to be predicted because it can be expressed in terms
of the trace model (section 2). Investigation indicates that
there are seven sources of noise that can affect the behav-
ior of a typical dynamic scheduler such that execution time
might change:

1. The previous state of the operation scheduler (due
to earlier executions) affects the resource allocations
used to execute the next basic block. Execution might
be stalled by earlier operations that are still being pro-
cessed, and previous resource allocations might even
lead to timing anomalies [19].

2. Executing variable duration instructions will affect
future resource allocations. This is a data-dependent
effect.

3. Cache stalls occur when data or instructions are not
in cache. These disrupt the pipeline just like variable
duration instructions and the previous scheduler state
because the scheduler continues to execute instruc-
tions as it waits for the stall to complete.

4. Branch predictions are produced as operations are
fetched, often generated by a heuristic mechanism.
They allow the scheduler to make an assumption
about the target address of each branch. Regardless
of whether a prediction is correct or not, incorporat-
ing the information into the scheduler is enough to
affect timing.

5. Branch misprediction squashes are generated when a
branch operation is executed and the associated pre-
diction is found to be wrong. A squash event is gen-
erated, causing all speculative executions beyond the
branch to be discarded. Fetching starts again from
the correct address. The time taken to do this de-
pends on what is executing and what has been ex-
ecuted. Branch misprediction squashes are particu-
larly problematic when they occur out of program or-
der because more than one can be active simultane-
ously.

6. Memory mispredictions occur when the scheduler has
incorrectly assumed something about memory ac-
cesses, e.g. that two store operations access different
addresses. The result is a squash event, much like a
branch misprediction.

7. Exceptions are generated when an instruction cannot
be executed, e.g. division by zero or null pointer
dereference. The result is something like a branch
misprediction, as execution jumps to an exception
handler.

The above list is not exhaustive: some CPUs may in-
clude additional sources of noise, e.g. memory manage-
ment subsystems. But all of the sources in the list can
be handled by avoidance or by incorporation into analysis.



For example, cache stalls can be avoided by using scratch-
pads to store instructions [13] and data [17]. In this paper,
scratchpads are used for both so that the scheduler can be
considered in isolation.

An avoidance strategy is used to handle variable du-
ration instructions and memory mispredictions. It is as-
sumed that all instructions execute in constant time and
that memory operations are issued in an order that is guar-
anteed to be safe by changing the memory disambiguation
logic in the CPU, so store operations always execute in
program order, and load operations cannot be reordered
across a store operation. These restrictions prevent stalls
and squashes from those sources. It is also assumed that
exceptions do not occur. Three sources of noise remain:
the previous state, branch predictions and branch mispre-
diction squashes. These can’t be avoided, but they can be
handled as follows:

• The previous state needs to be synchronized to a
known state before each virtual trace begins. In the
trace scratchpad approach this is assured implicitly
by the start of the microprogram. For virtual traces, it
has to be assured explicitly by draining the pipeline.
At the beginning of each virtual trace, a new hard-
ware component called the virtual trace controller
(VTC) stalls instruction fetching until the pipeline is
empty.

• Branch predictions must come from the virtual trace
(Figure 2). These predictions describe the main path
Pe,0.

• Branch misprediction squashes need to be incorpo-
rated into the trace model. Fortunately they are al-
ready supported. For every trace, there is one main
path Pe,0 with no mispredictions and n ≤ L other
paths Pe,j with exactly one misprediction (0 < j ≤
n). The only consequence of this from the perspec-
tive of the CPU design is that branch operations must
be executed in program order, since that will pre-
vent two or more squash events being active at the
same time. This can be assured through the exist-
ing mechanism that manages dependences between
instructions.

The CPU is integrated with the VTC as shown in Figure 3.
The VTC is a simple state machine. During normal opera-
tion, the VTC has the following functions: (1) ensure that
the pipeline is synchronized before the beginning of each
virtual trace (by stalling the fetch process), (2) guiding
execution along the main path by providing appropriate
branch predictions, and (3) fetching the next virtual trace
from memory when an exit is reached. The virtual trace
is stored within the virtual trace register (VTR). During
measurement, the VTC is also used to obtain t(Pe,i) for
each virtual trace. A test harness forces execution to begin
at a specific address and follow a specific path while the
VTC takes measurements.
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Figure 3. Block diagram of a CPU core,
(a) before and (b) after support for virtual
traces is added. Virtual traces are im-
plemented by the virtual trace controller
(VTC) and temporarily stored in the vir-
tual trace register (VTR).

The key property introduced by these changes is that
execution within each trace always follows one of the
paths Pe,i. For all its complexity, the dynamic scheduler
is still a deterministic machine. It is made predictable by
constraining the inputs and resynchronizing to a known
state.

3.2 Concerns about Virtual Traces
Virtual traces appear to be an ideal solution for support-

ing speculative execution within WCET analysis. How-
ever, new problems may be introduced:

• Reduction in Peak Throughput - the restrictions to the
operation scheduler in a CPU are certain to cause a
reduction in the maximum possible throughput. The
pipeline needs to be synchronized (i.e. drained) at
the beginning of each virtual trace. Additionally, the



changes to memory disambiguation reduce through-
put: store operations must execute in program order
so that there are no address conflicts. However, vir-
tual traces do not reduce performance. It is true that
the changes reduce the peak throughput relative to
a conventional CPU design, but peak throughput is
not a concern in hard real-time systems design. It is
the worst-case throughput, represented by the WCET,
that affects the design decisions. The argument is
that virtual traces enable the WCET to be reduced to
a greater extent than comparable techniques for pre-
dictable CPU design, which restrict optimizations to
a single basic block [16], assume a simple pipeline
model [1], or make heavy use of predication [14].

• Deterministic Memory Assumption - cache stalls are
eliminated by the use of instruction and data scratch-
pads. These allow memory requests to complete in a
known time period: they are deterministic, so they do
not introduce noise into the schedule. Virtual traces
will not work correctly with conventional caches un-
less the whole pipeline is stalled immediately as soon
as a cache miss occurs. This would be hard to ar-
range in a modern CPU design due to the propaga-
tion delay of the stall signal. Scratchpad allocation is
a challenging problem that is the subject of ongoing
work [13, 17].

4 Virtual Trace Formation
Since virtual traces can be used throughout a program,

virtual trace allocation is not a constrained optimization
problem like trace scratchpad allocation [21]. This section
proposes and evaluates a new trace formation algorithm
for virtual traces.

Trace formation algorithms require information about
the flow of execution within a program. For ACET re-
duction, this information is obtained using a path pro-
file which indicates likely sequences of basic blocks [5].
This is useful for choosing the paths that contribute most
to the average execution time. Unfortunately, whenever
WCET reduction optimizations are applied, the WCEP
may change [17], so the same approach cannot be directly
used to optimize the WCEP. Specialized algorithms are re-
quired in order to account for this.

4.1 Static Branch Prediction
A trace (virtual or otherwise) includes implicit branch

predictions (taken/not taken) for every conditional branch
on its path, so algorithms for assigning static branch pre-
dictions can solve part of the problem of trace forma-
tion. The Bodin and Puaut algorithm [3] (Figure 4) assigns
branch predictions to conditional branches in a program G
with the goal of minimizing the WCET.

Initially, all conditional branches are assumed to be
mispredicted, which means that each one will incur a
“misprediction penalty” whether it is taken or not taken.

procedure Set Predictions(G):
converged = False
(V, E) = G
for e ∈ E:

e.prediction = None
end for
while not converged:

// Step 1: WCET estimation
X Z = Calculate WCET(G)

// Step 2: Issue static branch predictions along the WCEP
converged = True
for ea ∈ E:

if f(ea) 6= 0:
// Basic block ea is on the WCEP

(v0, v1) = ea

if |{v2|(v1, v2) ∈ E}| > 1:
// Basic block ea is followed by a conditional branch

for (v1, v2) ∈ E:
eb = (v1, v2)
if f(eb) > f(ea.prediction):

ea.prediction = eb

converged = False
end if

end for
end if

end if
end for

end while
end procedure

Figure 4. Bodin and Puaut algorithm for
static branch prediction [3].

During each iteration of the algorithm, the WCEP is eval-
uated, which produces an execution count f(x) for each
edge x ∈ E, indicating the number of times that basic
block is executed in the WCEP. Branches along the WCEP
that lack a prediction are marked as taken or not taken,
with the goal of minimizing the number of mispredictions
on that path. In subsequent iterations, all branches on the
WCEP may already have predictions assigned. When this
happens, the algorithm stops.

Results reported in [3] indicate that the algorithm con-
verges in one or two iterations for every example tested.
WCET reductions of 5% to 21% are obtained relative
to the conservative strategy of assuming that conditional
branches are always mispredicted. The authors note that
the algorithm is not optimal, and no attempt has been made
to see how close to optimality it actually is.

4.2 Adapting Static Branch Prediction
The WCET-oriented static branch prediction algorithm

(Figure 4) solves part of the problem of trace formation by
indicating the direction to be optimized by traces. This
section describes how branch predictions can be turned
into traces (virtual or otherwise) by adapting the algorithm
from Figure 4.



BB1

BB3

BB6

BB2

BB5BB4

BB8BB7

BB1

BB3

BB6

BB2

BB5BB4

BB8BB7 BB8’

(a) (b)

Figure 5. Results of the trace formation
algorithm applied to Figure 1, (a) be-
fore and (b) after branch predictions are
added. (a) shows trivial traces, with no
more than two exits each. (b) shows
longer traces, which include more basic
blocks and thus allow more instruction-
level parallelism to be exploited, reducing
WCET further. To avoid the need to start
a new trace at BB8, tail duplication is used
to create a copy: BB8’.

The simplest way to assign traces to a program is just
to map each basic block onto a trace. These would be triv-
ial traces (Figure 5(a)), containing at most one conditional
branch and having at most two exits. This is identical to
the initial state of G in Set Predictions where branches are
always assumed to be mispredicted. As the algorithm it-
erates, branch predictions are added. These allow the size
of each trace to be increased, incorporating multiple ba-
sic blocks (Figure 5(b)). This increases the opportunity
for instruction-level parallelism in each trace, and also re-
duces the effects of the overhead introduced by entering or
leaving a trace. Consequently, the WCET is reduced.

Figure 6 gives the Form Traces algorithm, which forms
trivial traces at each basic block before predictions be-
come available. Then, as predictions are made by Figure
4, they are used to build longer traces. Each trace forma-
tion beginning at basic block e may stop when any of the
following conditions occurs: (1) an unpredicted branch is
reached, (2) L conditional branches have been processed,
or (3) e is reached for the n-th time, and the total number
of branches in the loop is large enough that L would be ex-
ceeded before e is reached for the (n + 1)-th time. These
formation rules permit loop unrolling and tail duplication.
Tail duplication is restricted only by the limit L. The final
condition ensures an integer number of loop unrolls.

function Form Traces(G, L):
(V, E) = G′ = copy(G)

// Get the roots of graph G′

queue = {(v0, v1)|(v0, v1) ∈ E ∧ ¬∃(v2, v0) ∈ E}
done = ∅ ; Θ = ∅
while |queue| 6= 0:

x = e = pop(queue)
if e ∈ done:

continue // repeat pop
end if
Pe = [ ] ; stop = False ; visited = ∅
exit num = size = 0 ; unrolling to = None
while stop = False:

// add this basic block to the paths through the trace
Pe = Pe + [x]

// find next basic block
(v0, v1) = x ; next = {(v1, v2)|(v1, v2) ∈ E}
visited = visited ∪ {x}
if |next| = 2:

// basic block x is followed by a branch
if x.prediction = None:

// halt: no more predictions
stop = True

else:
// predict direction of WCEP

x = x.prediction
exit num = exit num + 1 ; size = size + 1
if exit num = L:

stop = True
end if

// build another trace in the other direction
queue = queue ∪ (next − {x})

end if
else:

x = pop(next)
end if
if x ∈ visited:

// loop detected: check rule 3
if unrolling to ∈ [x,None]:

// loop entry point
if exit num + size ≥ L:

// too many unrolls
stop = True

end if
unrolling to = x ; size = 0

end if
end if

end while
// update todo and done sets

queue = queue ∪ {x} ; done = done ∪ {e}
// add the trace

Θ = Θ ∪ {Generate Trace(Pe)}
end while
return G′

end function

Figure 6. Algorithm for trace formation.



Form Traces is applied to G immediately before Calcu-
late WCET. Line X of Set Predictions (Figure 4) changes
to:

Z = Calculate WCET(Form Traces(G, L))

The WCET of a program containing traces made by
Form Traces can be determined using the extended IPET
model described in [20, 21]. Form Traces, Calcu-
late WCET and Set Predictions can all be applied to vir-
tual traces and microprogrammed traces.

4.3 Experimental Assumptions
The efficacy of virtual traces can be determined by

reusing the experimental platform from [21] as it includes
all of the components that are needed:

• Generate Trace: a procedure to obtain t(Pe,i) for
each of the paths through a trace Te. This procedure
is an operation scheduler, generating a microprogram
for the trace and obtaining the timings as a side effect.
The exact details of this procedure are not important,
since it fits the trace model given in section 2.

• Calculate WCET: a procedure to obtain the WCET Z
for a T-graph that includes any number of traces. This
procedure carries out WCET analysis using IPET.

In conjunction with Form Traces and Set Predictions,
these provide everything that is needed to evaluate the
new trace formation algorithm by modeling virtual traces.
The results include the implicit assumption that the traces
will be executed on the MCGREP-2 CPU (described
in [20]), since the path timings are obtained by analysis
of MCGREP-2 microprograms, but similar results would
be obtained for any CPU including a CPU using virtual
traces and a VTC.

In order to reuse the MCGREP-2 platform, it must be
assumed that the trace scratchpad size is unlimited, so that
any number of traces can be built by Form Traces. Sec-
ondly, technical limitations force the assumption that pro-
cedure call and return instructions exist in their own traces,
preventing traces spanning two procedures. If the restric-
tion were relaxed, greater WCET reductions might be pos-
sible.

4.4 Experiments
The experiments use a subset of the Mälardalen WCET

benchmarks [10] as sample programs for Set Predictions,
with line X changed to pass the program G through
Form Traces (Figure 6) before the call to Calcu-
late WCET. The Mälardalen benchmarks are used because
(1) they include a range of functions that might be imple-
mented on an embedded real-time system, and (2) they are
provided with the behavioral constraints required to per-
form WCET analysis. Hence, Set Predictions and Calcu-
late WCET can be used.

The ideal value of L is unknown, so multiple values are
tested from 1 to 16. L = 1 provides a useful baseline since

Program L = 4 L = 8 L = 12 L = 16
bs 0.672 0.672 0.672 0.672
bubble 0.292 0.244 0.243 0.242
cnt 0.680 0.635 0.623 0.618
compress 0.605 0.604 0.602 0.602
crc 0.565 0.374 0.310 0.287
div 0.698 0.680 0.676 0.675
duff 0.845 0.755 0.755 0.755
edn 0.633 0.538 0.511 0.498
expint 0.668 0.623 0.611 0.605
fdct 0.814 0.784 0.728 0.728
fibcall 0.720 0.720 0.720 0.720
fir 0.695 0.673 0.667 0.663
insertsort 0.699 0.640 0.585 0.546
janne complex 0.721 0.721 0.721 0.721
jfdctint 0.686 0.648 0.638 0.634
matmult 0.678 0.637 0.627 0.622
ndes 0.669 0.664 0.663 0.662
ns 0.329 0.283 0.273 0.240

Table 2. WCETs of benchmark programs
after Set Predictions, normalized against
the result for L = 1.

it permits only trivial traces, so all conditional branches
are assumed to be mispredicted. For each program G and
each value of L, the experiment executes Set Predictions
and obtains the WCET.

4.5 Evaluation
Firstly, it is observed that Set Predictions with trace for-

mation results in a reduction in the WCET. Table 2 shows
the WCETs for the benchmark programs after processing,
normalized against the result for L = 1 (trivial traces). It
is clear that the algorithm provides a real benefit. Figure
8 represents the same data in graph form. There is a dra-
matic improvement from L = 1 to L = 4 in all cases.
Many programs also benefit significantly when L is in-
creased to 8. Beyond that point, further increases are less
helpful: the WCET becomes defined by the conditional
branches that leave long traces. Significant improvements
for L = 12 and L = 16 are only seen for a small minority
of the programs (insertsort, crc, ns). These contain simple
inner loops that are guaranteed to execute many times in
the worst case.

Virtual traces are better than simply assuming branches
are always mispredicted, but they are most beneficial in
cases where the WCEP is significantly worse than other
paths. This is true in crc and ns, where all execution paths
include an inner loop that executes many times. It is also
true in bubble and insertsort, where the WCEP includes a
“swap” operation as part of the sort algorithm, because in
one case the swap is needed (and the trace helps) and in
the other case the swap is not needed (and although the
trace does not help, less code needs to be executed).



function Post Optimizer(G):
conditionals = {(v0, v1)|(v0, v1) ∈ E ∧
|{(v1, v2) ∈ E}| = 2 ∧ (v0, v1).prediction 6= None}

improvement = True ; i = 0 ; bestp = None
Z0 = Calculate WCET(G)
while improvement:

Zi = Z0 ; best = None
forall x ∈ conditionals:

// flip direction of prediction
save = x.prediction
(v0, v1) = x ; next = {(v1, v2)|(v1, v2) ∈ E}
x.prediction = pop(next - {x})

// test for improvement
Z1 = Calculate WCET(G)
if Z1 < Zi:

Zi = Z1 ; best = x
bestp = x.prediction

end if
// restore

x.prediction = save
end for
if best 6= None:

Z0 = Zi ; best.prediction = bestp
improvement = True ; i = i + 1

end if
end while

end procedure

Figure 7. Post Optimizer attempts
to improve the predictions made by
Set Predictions in order to reduce
WCET.

This suggests that it might be worth eliminating some
of the conditional branches and replacing them with pred-
icated operations, so that one path through a trace imple-
ments several actual paths through the program. A su-
perblock can be extended in this way using if-conversion:
the result is known as a hyperblock [9]. The single-path
paradigm [14] uses predication throughout a program to
reduce all paths to a single one. This simplifies WCET
analysis but might also increase the WCET of some pro-
grams, which would be avoided if such path merging was
only performed as a local optimization. However, support
for predication would force extensions to be made to the
operation scheduler.

4.6 Improvements to the Algorithm
The optimality of the Set Predictions algorithm has not

previously been studied [3]. It is known not to reconsider
any of the predictions that it makes, so suboptimal deci-
sions are fixed forever. The algorithm does consider the
possibility that the predictions might change the WCEP
but it responds to this only by adding more predictions
along the new WCEP. (This is used for ndes, where an ad-
ditional iteration is needed.) This suboptimality is a partic-
ular concern for traces because the extra cost of a branch

Program L = 4 L = 16
i NW %ch i NW %ch

cnt 1 0.679 0.1% 1 0.618 0.1%
compress 3 0.604 0.2% 2 0.601 0.2%
edn 2 0.629 0.5% n/a
expint 1 0.668 0.0% 1 0.605 0.0%
fibcall 1 0.616 16.8% 1 0.616 16.8%
janne complex 2 0.675 6.7% 2 0.675 6.7%
matmult 2 0.677 0.1% 2 0.622 0.1%
ndes 4 0.669 0.1% 5 0.661 0.2%
ns 3 0.305 7.9% 2 0.198 21.3%

Table 3. WCET reduction achieved by
Post Optimizer after i iterations, ex-
pressed as a normalized WCET (NW) and
as a percentage of the starting WCET
from Table 2. Benchmarks are omitted
from this table where no improvement
was found.

misprediction is potentially higher. Therefore, this section
considers reviewing predictions after they are made: this
might lead to a lower WCET.

In order to experiment with this possibility, a sec-
ond algorithm was implemented to improve the results
of Set Predictions (Figure 7). Post Optimizer temporarily
switches the direction of each branch prediction in turn,
then evaluates the WCET. If any WCET reduction was
found, the change resulting in the lowest WCET is com-
mitted and the algorithm repeats. Thus, Post Optimizer
is a hill-climbing search for the best set of branch predic-
tions. It is slow because it considers changes to every con-
ditional branch whenever an improvement can be made to
any conditional branch. However, this is justified because
the purpose is to evaluate Set Predictions against the im-
provements that could be made if computation time is not
an issue.

The WCET reductions obtained by Post Optimizer are
usually minimal (Table 3). Post Optimizer was only able
to improve 9 out of the 18 benchmarks, and then only by a
fraction of a percentage in 6 of those cases. This suggests
that Set Predictions already works well enough for most
programs, even though it uses a simple strategy. Each of
the three cases where Post Optimizer led to a significant
improvement were found to be due to a situation where
adding traces caused a subtle change in the WCEP at a
frequently-executed point in the program. For example,
in ns, the branch at the end of an inner loop is originally
assumed to be taken. But adding traces transforms the
inner loop to the extent that it is actually better to pre-
dict it as not taken. Similar changes are applied to fibcall
and janne complex. This suggests that Post Optimizer is
worthwhile in some cases, and that it is therefore worth
trying to reduce its time cost. One way to do this would
be to consider only n conditionals with the highest val-
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Figure 8. Data from Table 2 in graph form. The X axis has been sorted in order of average
WCET reduction.

ues of f(x), since these have the most significant effect on
the results. Similar WCETs would have been obtained if
Post Optimizer was limited to considering only the top 10
conditionals.

5 Related Work
CPUs with dynamic superscalar out-of-order operation

schedulers pose significant challenges for WCET analy-
sis because execution times can depend on execution his-
tory. Many of the components of a CPU have to be mod-
eled accurately in order to obtain WCET estimates that
are safe (not underestimates) and tight (close to the true
WCET): depending on the architecture, these may include
caches, the scheduler and other parts of the memory sub-
system. In the WCET analysis community, caches have
been modeled with a reasonable degree of success [11] us-
ing knowledge about execution flow. But the models are
not applicable to every practical cache design, and must be
redesigned for every CPU in order to account for interac-
tions with other CPU components, which may themselves
depend on execution history [6]. An alternative to cache
analysis is to replace caches with predictable components
such as scratchpads [13, 17].

The scalability of pipeline modeling techniques is also
limited by the possibility of timing anomalies [8] which
may occur if dynamic resource allocation decisions are
being made [19], which is possible in most superscalar
out-of-order pipelines. This is not a problem for virtual
trace analysis since anomalies always occur in the same
way for each path through the trace, so each t(Pe,i) is con-
stant. Earlier work has concentrated on simplifying com-
plex pipelines to eliminate timing anomalies [16], con-
straining dynamic behavior to prevent their effects [1], or
attempting to account for the possible effects of timing
anomalies with pessimistic assumptions [7]. This paper

differs from these approaches in that it permits superscalar
out-of-order operation as part of the analysis without in-
troducing pessimism.

Virtual traces constrain operation in order to permit
measurement, since the use of measurement can remove
the need to make an accurate model of a CPU. This is
related to the motivation for measurement-based WCET
analysis approaches [2, 12], but the key difference is that
statistical methods are not needed when virtual traces are
used because there is no unpredictable operation. Some
constraints are applied to reduce unpredictability in [12]
(e.g. arranging the CPU pipeline into a “worst case” state
prior to measurement) but the constraints applied for vir-
tual traces eliminate all unpredictability.

Virtual traces are related to the use of static branch pre-
diction, which has previously been suggested as a way to
simplify WCET analysis [3]. Virtual traces include se-
quences of static branch predictions, but the way in which
they are used is very different. In [3], a fixed time penalty
is added to every T-graph edge that represents a mispre-
dicted branch, and timing anomalies are ignored by assum-
ing worst-case behavior in all cases. This is pessimistic,
but there is no way to guarantee particular behavior be-
cause the dynamic scheduler may start in any state. In
contrast, virtual traces always begin in the base state and
always return to that state within L branch predictions.
Thus, the scheduler behavior is guaranteed, and so there
is no pessimism in the low-level model of the CPU.

6 Conclusion
This paper has described and discussed virtual traces,

which are viewed as an architectural solution to the prob-
lem of modeling superscalar out-of-order CPUs for WCET
analysis. The paper has described and implemented an al-
gorithm (Set Predictions) for forming virtual traces in a



program, based on previous work on static branch predic-
tion, and evaluated it using a model built using previous
work. The results show that the WCET can be reduced
using virtual traces, and limiting virtual trace sizes to 8
branch predictions is sufficient for most of the programs
considered on the MCGREP-2 CPU platform, although
some programs benefit from higher limits.

The greatest benefits of traces are seen in programs
where one path is significantly worse than the others, sug-
gesting that local usage of the single-path paradigm may
be helpful. This paper has also attempted to improve the
quality of the results of Set Predictions by post optimiza-
tion, but found that improvements are not usually possi-
ble, i.e. Set Predictions works well, although a heuris-
tic such as Post Optimizer will produce improvements in
some cases.
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